Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Lead halide perovskites have emerged as promising materials for light-emitting devices. Here, we report the preparation of colloidal CsPbBr3 nanoplatelets (3 × 4 × 23 nm3) experiencing a strong quasi-one-dimensional quantum confine- ment. Ultrafast transient absorption and broadband fluorescence up-conversion spectroscopies were employed to scrutinize the carrier and quasiparticle dynamics and to obtain a full description of the spectroscopic properties of the material. An exciton binding energy of 350 meV, an absorption cross section at 3.2 eV of 5.0 ± 0.3 × 10−15 cm−2, an efficient biexciton Auger recombination lifetime of 9 ± 1 ps, and a biexciton binding energy of 74 ± 4 meV were determined. Moreover, a short-lived emission from hot excitons was observed, which is related to the formation of band-edge excitons. The time constant of both processes is 300 ± 50 fs. These results show that CsPbBr3 nanoplatelets are indeed quite promising for light-emitting technological applications.
Sergio Vela Llausi, Maria Fumanal Quintana, Yanan Zhu