Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Electroluminescence (EL) is an optical and electrical phenomenon, in which a material emits light in response to the passage of an electric current or to a strong electric field. This is distinct from black body light emission resulting from heat (incandescence), chemical reactions (chemiluminescence), reactions in a liquid (electrochemiluminescence), sound (sonoluminescence), or other mechanical action (mechanoluminescence). Electroluminescence is the result of radiative recombination of electrons & holes in a material, usually a semiconductor. The excited electrons release their energy as photons - light. Prior to recombination, electrons and holes may be separated either by doping the material to form a p-n junction (in semiconductor electroluminescent devices such as light-emitting diodes) or through excitation by impact of high-energy electrons accelerated by a strong electric field (as with the phosphors in electroluminescent displays). It has been recently shown that as a solar cell improves its light-to-electricity efficiency (improved open-circuit voltage), it will also improve its electricity-to-light (EL) efficiency. Electroluminescent technologies have low power consumption compared to competing lighting technologies, such as neon or fluorescent lamps. This, together with the thinness of the material, has made EL technology valuable to the advertising industry. Relevant advertising applications include electroluminescent billboards and signs. EL manufacturers can control precisely which areas of an electroluminescent sheet illuminate, and when. This has given advertisers the ability to create more dynamic advertising that is still compatible with traditional advertising spaces. An EL film is a so-called Lambertian radiator: unlike with neon lamps, filament lamps, or LEDs, the brightness of the surface appears the same from all angles of view; electroluminescent light is not directional and therefore hard to compare with (thermal) light sources measured in lumens or lux.
Aïcha Hessler-Wyser, Johann Michler, Amit Sharma, Caroline Hain, Daniele Casari, Thomas Nelis