Deriving Brain Myelin Water Fraction Maps from Relaxometry: a Data-Driven Approach
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Here we provide the neural data, activation and predictions for the best models and result dataframes of our article "Task-driven neural network models predict neural dynamics of proprioception". It contains the behavioral and neural experimental data (cu ...
Magnetic resonance spectroscopy is a powerful, non-invasive, quantitative imaging technique that allows for the measurement of brain metabolites that has demonstrated utility in diagnosing and characterizing a broad range of neurological diseases. Its impa ...
In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
Modern integrated circuits are tiny yet incredibly complex technological artifacts, composed of millions and billions of individual structures working in unison.Managing their complexity and facilitating their design drove part of the co-evolution of moder ...
Years of a fierce competition have naturally selected the fittest deep learning algorithms. Yet, although these models work well in practice, we still lack a proper characterization of why they do so. This poses serious questions about the robustness, trus ...
With the significant increase in photovoltaic (PV) electricity generation, more attention has been given to PV power forecasting. Indeed, accurate forecasting allows power grid operators to better schedule and dispatch their assets, such as energy storage ...
The present work proposes a framework for nonlinear model order reduction based on a Graph Convolutional Autoencoder (GCA-ROM). In the reduced order modeling (ROM) context, one is interested in obtaining real -time and many-query evaluations of parametric ...
Dielectric Elastomer Actuators (DEA) are devices designed to convert electric energy into mechanical work. However, the current actuator design will expand when actuated while muscles contract. Fiber reinforcement may allow for anisotropic movement, which ...
Atomic simulations using machine learning interatomic potential (MLIP) have gained a lot of popularity owing to their accuracy in comparison to conventional empirical potentials. However, the transferability of MLIP to systems outside the training set pose ...
Purpose: The purpose of this study was to describe, validate, and compare the contrast sensitivity functions (CSFs) acquired with the novel quick CSF (qCSF) method from patients with early and intermediate age-related macular degeneration (eAMD and iAMD) a ...