Waveguide-Based Platform for Large-FOV Imaging of Optically Active Defects in 2D Materials
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Imaging live cells in their native environment is crucial for the understanding of complex biological phenomena. Modern optical microscopy methods such as fluorescence super-resolution microscopy are increasingly combined with complementary, label-free tec ...
Studying dynamic biological processes, such as heart development and function in zebrafish embryos, often relies on multi-channel fluorescence labeling to distinguish multiple anatomical features, yet also demands high frame rates to capture rapid cell mot ...
Defects in solid-state systems can be both detrimental, deteriorating the quality of materials, or desired, thanks to the novel functionality they bring. Optically active point defects, producing fluorescent light, are a great example of the latter. Natura ...
EPFL2021
, , ,
Single-molecule localization microscopy (SMLM) is a powerful method for the imaging of cellular structures. This modality delivers nanoscale resolution by sequentially activating a subset of fluorescent molecules and by extracting their super-resolved posi ...
2021
Light microscopy is a tool of paramount importance for biologists and has been constantly improved for the past four centuries. Despite many recent developments, microscopy techniques still require improvement, especially to reach better temporal and spect ...
EPFL2020
Super-resolution fluorescence microscopy is widespread, owing to its demonstrated ability to resolve dynamical processes within cells and to identify the structure and position of specific proteins in the interior of protein complexes. Nowadays, subcellula ...
Optical microscopy is one widely used tool to study cell functions and the interaction of molecules at a sub-cellular level. Optical microscopy techniques can be broadly divided into two categories: partially coherent and incoherent. Coherent microscopy te ...
Horizontal black lipid membranes (BLMs) enable optical microscopy to be combined with the electrophysiological measurements for studying ion channels, peptide pores, and ionophores. However, a careful literature review reveals that simultaneous fluorescenc ...
Background: Structured illumination microscopy (SIM) is a family of methods in optical fluorescence microscopy that can achieve both optical sectioning and super-resolution effects. SIM is a valuable method for high-resolution imaging of fixed cells or tis ...
Overcoming the classical diffraction limit in optical microscopy is known to be achievable by a variety of far-field and near-field microscopy techniques. More recently, so-called micro-object-based optical super-resolution microscopy techniques have emerg ...