The Latitudinal Variability of Oceanic Rainfall Properties and Its Implication for Satellite Retrievals: 2. The Relationships Between Radar Observables and Drop Size Distribution Parameters
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Precipitation is an important component of the Earth' water cycle and needs to be carefully monitored. Its large variability over a wide range of spatial and temporal scales must be taken into account. For example, hydrological models require accurate rain ...
A stochastic method to disaggregate rain rate fields into drop size distribution (DSD) fields is proposed. It is based on a previously presented DSD simulator that has been modified to take into account prescribed block-averaged rain rate values at a coars ...
Accurate modelling of liquid, solid and mixed-phase precipitation requires a thorough understanding of phenomena occurring at various spatial and temporal scales. At the smallest scales, precipitation microphysics defines all the processes occurring at the ...
Measurement of rain is made difficult by the high variability of the precipitation process, down to raindrop scale. Point measurements are generally accurate, but their lack of spatial representativeness is a significant limitation. Weather radars indirect ...
The framework of universal multifractals (UM) characterizes the spatio-temporal variability in geophysical data over a wide range of scales with only a limited number of scale-invariant parameters. This work aims to clarify the link between multifractals ( ...
In this paper we present a non-stationary stochastic generator for radar rainfall fields based on the short-space Fourier transform (SSFT). The statistical properties of rainfall fields often exhibit significant spatial heterogeneity due to variability in ...
Insight into the spatial variability of the (rain) drop size distribution (DSD), and hence rainfall, is of primary importance for various environmental applications like cloud/precipitation microphysical processes, numerical weather modeling, and estimatio ...
The variability of the (rain)drop size distribution (DSD) in time and space is an intrinsic property of rainfall, of primary importance for various environmental fields such as remote sensing of precipitation for example. DSD observations are usually colle ...
The drop size distribution (DSD) describes the microstructure of liquid precipitation. The high variability of the DSD reflects the variety of microphysical processes controlling raindrop properties and affects the retrieval of rainfall. An analysis of the ...
A method for the stochastic simulation of (rain)drop size distributions (DSDs) in space and time using geostatistics is presented. At each pixel, the raindrop size distribution is described by a Gamma distribution with two or three stochastic parameters. T ...