Compact Muon SolenoidThe Compact Muon Solenoid (CMS) experiment is one of two large general-purpose particle physics detectors built on the Large Hadron Collider (LHC) at CERN in Switzerland and France. The goal of the CMS experiment is to investigate a wide range of physics, including the search for the Higgs boson, extra dimensions, and particles that could make up dark matter. CMS is 21 metres long, 15 m in diameter, and weighs about 14,000 tonnes. Over 4,000 people, representing 206 scientific institutes and 47 countries, form the CMS collaboration who built and now operate the detector.
Color chargeColour charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). The "colour charge" of quarks and gluons is completely unrelated to the everyday meanings of color and charge. The term colour and the labels red, green, and blue became popular simply because of the loose analogy to the primary colours.
Weak isospinIn particle physics, weak isospin is a quantum number relating to the electrically charged part of the weak interaction: Particles with half-integer weak isospin can interact with the _W boson+- bosons; particles with zero weak isospin do not. Weak isospin is a construct parallel to the idea of isospin under the strong interaction. Weak isospin is usually given the symbol T or I, with the third component written as T_3 or I_3. It can be understood as the eigenvalue of a charge operator.
OniumAn onium (plural: onia) is a bound state of a particle and its antiparticle. These states are usually named by adding the suffix -onium to the name of one of the constituent particles (replacing an -on suffix when present), with one exception for "muonium"; a muon–antimuon bound pair is called "true muonium" to avoid confusion with old nomenclature. Positronium is an onium which consists of an electron and a positron bound together as a long-lived metastable state.
Physics beyond the Standard ModelPhysics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as spacetime singularities like the Big Bang and black hole event horizons.
Exotic atomAn exotic atom is an otherwise normal atom in which one or more sub-atomic particles have been replaced by other particles of the same charge. For example, electrons may be replaced by other negatively charged particles such as muons (muonic atoms) or pions (pionic atoms). Because these substitute particles are usually unstable, exotic atoms typically have very short lifetimes and no exotic atom observed so far can persist under normal conditions.
BaryonIn particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classified as fermions because they have half-integer spin. The name "baryon", introduced by Abraham Pais, comes from the Greek word for "heavy" (βαρύς, barýs), because, at the time of their naming, most known elementary particles had lower masses than the baryons.
BaryogenesisIn physical cosmology, baryogenesis (also known as baryosynthesis) is the physical process that is hypothesized to have taken place during the early universe to produce baryonic asymmetry, i.e. the imbalance of matter (baryons) and antimatter (antibaryons) in the observed universe. One of the outstanding problems in modern physics is the predominance of matter over antimatter in the universe. The universe, as a whole, seems to have a nonzero positive baryon number density.
Muon g-2Muon g − 2 (pronounced "gee minus two") is a particle physics experiment at Fermilab to measure the anomalous magnetic dipole moment of a muon to a precision of 0.14 ppm, which is a sensitive test of the Standard Model. It might also provide evidence of the existence of new particles. The muon, like its lighter sibling the electron, acts like a tiny magnet. The parameter known as the "g factor" indicates how strong the magnet is and the rate of its gyration in an externally applied magnetic field.
GluonA gluon (ˈɡluːɒn ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind quarks together, forming hadrons such as protons and neutrons. Gluons are vector gauge bosons that mediate strong interactions of quarks in quantum chromodynamics (QCD). Gluons themselves carry the color charge of the strong interaction.