Summary
In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classified as fermions because they have half-integer spin. The name "baryon", introduced by Abraham Pais, comes from the Greek word for "heavy" (βαρύς, barýs), because, at the time of their naming, most known elementary particles had lower masses than the baryons. Each baryon has a corresponding antiparticle (antibaryon) where their corresponding antiquarks replace quarks. For example, a proton is made of two up quarks and one down quark; and its corresponding antiparticle, the antiproton, is made of two up antiquarks and one down antiquark. Because they are composed of quarks, baryons participate in the strong interaction, which is mediated by particles known as gluons. The most familiar baryons are protons and neutrons, both of which contain three quarks, and for this reason they are sometimes called triquarks. These particles make up most of the mass of the visible matter in the universe and compose the nucleus of every atom (electrons, the other major component of the atom, are members of a different family of particles called leptons; leptons do not interact via the strong force). Exotic baryons containing five quarks, called pentaquarks, have also been discovered and studied. A census of the Universe's baryons indicates that 10% of them could be found inside galaxies, 50 to 60% in the circumgalactic medium, and the remaining 30 to 40% could be located in the warm–hot intergalactic medium (WHIM). Baryons are strongly interacting fermions; that is, they are acted on by the strong nuclear force and are described by Fermi–Dirac statistics, which apply to all particles obeying the Pauli exclusion principle. This is in contrast to the bosons, which do not obey the exclusion principle. Baryons, along with mesons, are hadrons, particles composed of quarks.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.