GauginoIn supersymmetry theories of particle physics, a gaugino is the hypothetical fermionic supersymmetric field quantum (superpartner) of a gauge field, as predicted by gauge theory combined with supersymmetry. All gauginos have spin 1/2, except for gravitino (spin 3/2). In the minimal supersymmetric extension of the standard model the following gauginos exist: The gluino (symbol _gluino) is the superpartner of the gluon, and hence carries color charge. The gravitino (symbol _gravitino) is the supersymmetric partner of the graviton.
Invariant massThe invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, it is a characteristic of the system's total energy and momentum that is the same in all frames of reference related by Lorentz transformations. If a center-of-momentum frame exists for the system, then the invariant mass of a system is equal to its total mass in that "rest frame".
Extended supersymmetryIn theoretical physics, extended supersymmetry is supersymmetry whose infinitesimal generators carry not only a spinor index , but also an additional index where is integer (such as 2 or 4). Extended supersymmetry is also called , supersymmetry, for example. Extended supersymmetry is very important for analysis of mathematical properties of quantum field theory and superstring theory. The more extended supersymmetry is, the more it constrains physical observables and parameters.
X (charge)In particle physics, the X charge (or simply X) is a conserved quantum number associated with the SO(10) grand unification theory. It is thought to be conserved in strong, weak, electromagnetic, gravitational, and Higgs interactions. Because the X charge is related to the weak hypercharge, it varies depending on the helicity of a particle. For example, a left-handed quark has an X charge of +1, whereas a right-handed quark can have either an X charge of −1 (for up, charm and top quarks), or −3 (for down, strange and bottom quarks).
Decay heatDecay heat is the heat released as a result of radioactive decay. This heat is produced as an effect of radiation on materials: the energy of the alpha, beta or gamma radiation is converted into the thermal movement of atoms. Decay heat occurs naturally from decay of long-lived radioisotopes that are primordially present from the Earth's formation. In nuclear reactor engineering, decay heat continues to be generated after the reactor has been shut down (see SCRAM and nuclear chain reactions) and power generation has been suspended.