Confidence distributionIn statistical inference, the concept of a confidence distribution (CD) has often been loosely referred to as a distribution function on the parameter space that can represent confidence intervals of all levels for a parameter of interest. Historically, it has typically been constructed by inverting the upper limits of lower sided confidence intervals of all levels, and it was also commonly associated with a fiducial interpretation (fiducial distribution), although it is a purely frequentist concept.
Proton decayIn particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron. The proton decay hypothesis was first formulated by Andrei Sakharov in 1967. Despite significant experimental effort, proton decay has never been observed. If it does decay via a positron, the proton's half-life is constrained to be at least 1.67e34 years.
Chi-squared distributionIn probability theory and statistics, the chi-squared distribution (also chi-square or -distribution) with degrees of freedom is the distribution of a sum of the squares of independent standard normal random variables. The chi-squared distribution is a special case of the gamma distribution and is one of the most widely used probability distributions in inferential statistics, notably in hypothesis testing and in construction of confidence intervals.
Set theorySet theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory.
HyperonIn particle physics, a hyperon is any baryon containing one or more strange quarks, but no charm, bottom, or top quark. This form of matter may exist in a stable form within the core of some neutron stars. Hyperons are sometimes generically represented by the symbol Y. The first research into hyperons happened in the 1950s and spurred physicists on to the creation of an organized classification of particles.
NucleonIn physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were thought to be elementary particles, not made up of smaller parts. Now they are known to be composite particles, made of three quarks bound together by the strong interaction. The interaction between two or more nucleons is called internucleon interaction or nuclear force, which is also ultimately caused by the strong interaction.
Set (mathematics)A set is the mathematical model for a collection of different things; a set contains elements or members, which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics.
StrangenessIn particle physics, strangeness ("S") is a property of particles, expressed as a quantum number, for describing decay of particles in strong and electromagnetic interactions which occur in a short period of time. The strangeness of a particle is defined as: where n_Strange quark represents the number of strange quarks (_Strange quark) and n_Strange antiquark represents the number of strange antiquarks (_Strange antiquark). Evaluation of strangeness production has become an important tool in search, discovery, observation and interpretation of quark–gluon plasma (QGP).
68–95–99.7 ruleIn statistics, the 68–95–99.7 rule, also known as the empirical rule, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively. In mathematical notation, these facts can be expressed as follows, where Pr() is the probability function, Χ is an observation from a normally distributed random variable, μ (mu) is the mean of the distribution, and σ (sigma) is its standard deviation: The usefulness of this heuristic especially depends on the question under consideration.
Empty setIn mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called non-empty. In some textbooks and popularizations, the empty set is referred to as the "null set".