Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In Deep Neural Network (DNN) i-vector based speaker recognition systems, acoustic models trained for Automatic Speech Recognition are employed to estimate sufficient statistics for i-vector modeling. The DNN based acoustic model is typically trained on a w ...
In this paper, we are interested in exploring Deep Neural Network (DNN) based speaker embedding for Random-digit task using content information. To this end, a technique is applied to automatically select common phonetic units between the enrollment and te ...
Phoneme-based multilingual connectionist temporal classification (CTC) model is easily extensible to a new language by concatenating parameters of the new phonemes to the output layer. In the present paper, we improve cross-lingual adaptation in the contex ...
Different training and adaptation techniques for multilingual Automatic Speech Recognition (ASR) are explored in the context of hybrid systems, exploiting Deep Neural Networks (DNN) and Hidden Markov Models (HMM). In multilingual DNN training, the hidden l ...
Model-based approaches to Speaker Verification (SV), such as Joint Factor Analysis (JFA), i-vector and relevance Maximum-a-Posteriori (MAP), have shown to provide state-of-the-art performance for text-dependent systems with fixed phrases. The performance o ...
Development of countermeasures to detect attacks performed on speaker verification systems through presentation of forged or altered speech samples is a challenging and open research problem. Typically, this problem is approached by extracting features thr ...
In the last decade, i-vector and Joint Factor Analysis (JFA) approaches to speaker modeling have become ubiquitous in the area of automatic speaker recognition. Both of these techniques involve the computation of posterior probabilities, using either Gauss ...
State of the art query by example spoken term detection (QbE-STD) systems rely on representation of speech in terms of sequences of class-conditional posterior probabilities estimated by deep neural network (DNN). The posteriors are often used for pattern ...
Standard automatic speech recognition (ASR) systems follow a divide and conquer approach to convert speech into text. Alternately, the end goal is achieved by a combination of sub-tasks, namely, feature extraction, acoustic modeling and sequence decoding, ...
This paper explores novel ideas in building end-to-end deep neural network (DNN) based text-dependent speaker verification (SV) system. The baseline approach consists of mapping a variable length speech segment to a fixed dimensional speaker vector by esti ...