Frequentist inferenceFrequentist inference is a type of statistical inference based in frequentist probability, which treats “probability” in equivalent terms to “frequency” and draws conclusions from sample-data by means of emphasizing the frequency or proportion of findings in the data. Frequentist-inference underlies frequentist statistics, in which the well-established methodologies of statistical hypothesis testing and confidence intervals are founded. The primary formulation of frequentism stems from the presumption that statistics could be perceived to have been a probabilistic frequency.
Foundations of statisticsStatistics is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data, and is used to solve practical problems and draw conclusions. When analyzing data, the approaches used can lead to different conclusions on the same data. For example, weather forecasts often vary among different forecasting agencies that use different forecasting algorithms and techniques. Conclusions drawn from statistical analysis often involve uncertainty as they represent the probability of an event occurring.
Statistical inferenceStatistical inference is the process of using data analysis to infer properties of an underlying distribution of probability. Inferential statistical analysis infers properties of a population, for example by testing hypotheses and deriving estimates. It is assumed that the observed data set is sampled from a larger population. Inferential statistics can be contrasted with descriptive statistics. Descriptive statistics is solely concerned with properties of the observed data, and it does not rest on the assumption that the data come from a larger population.
Frequentist probabilityFrequentist probability or frequentism is an interpretation of probability; it defines an event's probability as the limit of its relative frequency in many trials (the long-run probability). Probabilities can be found (in principle) by a repeatable objective process (and are thus ideally devoid of opinion). The continued use of frequentist methods in scientific inference, however, has been called into question. The development of the frequentist account was motivated by the problems and paradoxes of the previously dominant viewpoint, the classical interpretation.
Input/outputIn computing, input/output (I/O, i/o, or informally io or IO) is the communication between an information processing system, such as a computer, and the outside world, possibly a human or another information processing system. Inputs are the signals or data received by the system and outputs are the signals or data sent from it. The term can also be used as part of an action; to "perform I/O" is to perform an input or output operation. are the pieces of hardware used by a human (or other system) to communicate with a computer.
Bayesian statisticsBayesian statistics (ˈbeɪziən or ˈbeɪʒən ) is a theory in the field of statistics based on the Bayesian interpretation of probability where probability expresses a degree of belief in an event. The degree of belief may be based on prior knowledge about the event, such as the results of previous experiments, or on personal beliefs about the event. This differs from a number of other interpretations of probability, such as the frequentist interpretation that views probability as the limit of the relative frequency of an event after many trials.
Probability interpretationsThe word probability has been used in a variety of ways since it was first applied to the mathematical study of games of chance. Does probability measure the real, physical, tendency of something to occur, or is it a measure of how strongly one believes it will occur, or does it draw on both these elements? In answering such questions, mathematicians interpret the probability values of probability theory. There are two broad categories of probability interpretations which can be called "physical" and "evidential" probabilities.
Thomas BayesThomas Bayes (beɪz ; 1701 7 April 1761) was an English statistician, philosopher and Presbyterian minister who is known for formulating a specific case of the theorem that bears his name: Bayes' theorem. Bayes never published what would become his most famous accomplishment; his notes were edited and published posthumously by Richard Price. Thomas Bayes was the son of London Presbyterian minister Joshua Bayes, and was possibly born in Hertfordshire. He came from a prominent nonconformist family from Sheffield.
Nuisance parameterIn statistics, a nuisance parameter is any parameter which is unspecified but which must be accounted for in the hypothesis testing of the parameters which are of interest. The classic example of a nuisance parameter comes from the normal distribution, a member of the location–scale family. For at least one normal distribution, the variance(s), σ2 is often not specified or known, but one desires to hypothesis test on the mean(s).
Bayes' theoremIn probability theory and statistics, Bayes' theorem (beɪz or beɪzɪz ; alternatively Bayes' law or Bayes' rule), and occasionally Bayes's theorem, named after Thomas Bayes, describes the probability of an event, based on prior knowledge of conditions that might be related to the event. For example, if the risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to an individual of a known age to be assessed more accurately by conditioning it relative to their age, rather than simply assuming that the individual is typical of the population as a whole.