Chiral Spin-Wave Velocities Induced by All-Garnet Interfacial Dzyaloshinskii-Moriya Interaction in Ultrathin Yttrium Iron Garnet Films
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In recent years, topology gained a central role in physics. We learnt that energetics could be often explained better by classes of objects defined by having qualitative differences. In today's jargon, we say they are topologically distinct. The process of ...
The Dzyaloshinskii-Moriya interaction (DMI) has an impact on excited spin waves in the chiral magnet Cu2OSeO3 by means of introducing asymmetry in their dispersion relations. The confined eigenmodes of a chiral magnet are hence no longer the conventional s ...
Magnonics is a budding research field in nanomagnetism and nanoscience that addresses the use of spin waves (magnons) to transmit, store, and process information. The rapid advancements of this field during last one decade in terms of upsurge in research p ...
Collective spin excitations can propagate in magnetically ordered materials in the form of waves. These so-called spin waves (SWs) or magnons are promising for low-power beyond-CMOS information processing, which does not rely anymore on the lossy movement ...
EPFL2021
This thesis is devoted to the investigation of static and dynamic properties of
two different sets of quantum magnets with neutron scattering techniques and
the help of linear spin wave theory.
Both systems are copper-based with spin-1/2, which makes them ...
Quasicrystals are aperiodically ordered structures with unconventional rotational symmetry. Their peculiar features have been explored in photonics to engineer bandgaps for light waves. Magnons (spin waves) are collective spin excitations in magnetically o ...
Spin dynamics in skyrmion hosting materials provide novel functionality in magnonics because of the formation of a novel magnon band structure and the nanoscale sizes of magnetic skyrmions. In this thesis, we explore the spin dynamics in the chiral magnet ...
EPFL2021
Magnetic thin films and magnetic nanostructures have become essential components of modern technological applications. Modern branches of magnetisms focus on spin-charge coupling (spintronics) and the collective excitation of spin waves in magnetically ord ...
Magnonic crystals are interesting for spin-wave based data processing. We investigate one-dimensional magnonic crystals (1D MCs) consisting of bistable Co20Fe60B20 nanostripes separated by 75 nm wide air gaps. By adjusting the magnetic history, we program ...
Magnons (spin waves, SWs) are elementary spin excitations in magnetically ordered materials. They are the promising quanta for the transmission and processing of information. Magnons can be coupled to the electromagnetic waves utilized for the wireless com ...