Theory of screw dislocation strengthening in random BCC alloys from dilute to "High-Entropy" alloys
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The detrimental effects of the H on the mechanical properties of the metals are known for more than a century. One of the most important degradation mechanisms is H embrittlement (HE). In this thesis, we examined a few famous proposed mechanisms in the fie ...
Metal fatigue during cyclic loading puts an endurance limit on most of today's technology. It impacts the reliability of metallic components used for transportation, electronic devices and energy production because fatigue failure can occur without any app ...
The stability of a mixed < c + a > dislocation on the pyramidal I plane in magnesium is studied using molecular dynamics simulations. The dislocation is metastable and undergoes a thermally-activated transition to either a sessile, basal-dissociated < c + ...
Molecular statics and molecular dynamics simulations are presented for the structure and glide motion of a/2(111) dislocations in a randomly-distributed model-BCC Co16.67Fe36.67Ni16.67Ti30 alloy. Core structure variations along an individual dislocation li ...
In this work, molecular statics and molecular dynamics simulations of a/2 < 110 > dislocation behavior for a model FCC Co30Fe16.67Ni36.67Ti16.67 alloy are discussed. It is shown that the single FCC phase is elastically stable in this alloy. Local stacking ...
Cross-slip is a fundamental process of screw dislocation motion and plays an important role in the evolution of work hardening and dislocation structuring in metals. Cross-slip has been widely studied in pure FCC metals but rarely in FCC solid solutions. H ...
Dislocation core structures of hcp metals are highly complex and differ significantly among the hcp family. Some dislocations undergo unconventional transformations that have significant effects on the material plastic flow. Here, the energetics of disloca ...
We study the mobility law of dislocations in aluminum as an important building block for the development of a multiscale method that couples an atomistic model with discrete dislocation dynamics in 3d (\eg CADD3d). Straight dislocations of arbitrary charac ...
Using atomistic simulations, the effect of jogs on the cross-slip of screw character dislocations and screw-dipole annihilation was examined for both FCC Cu and Ni. The stress-free activation energy for cross-slip at jogs is close to 0.4 eV in Cu, determin ...
The stability of a mixed < c + a > dislocation on the pyramidal I plane in magnesium is studied using molecular dynamics simulations. The dislocation is metastable and undergoes a thermally-activated transition to either a sessile, basal-dissociated < c + ...