A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain
Related publications (85)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Binary keypoint descriptors provide an efficient alternative to their floating-point competitors as they enable faster processing while requiring less memory. In this paper, we propose a novel framework to learn an extremely compact binary descriptor we ca ...
This thesis deals with models and methods for large scale optimization problems; in particular, we focus on decision problems arising in the context of seaport container terminals for the efficient management of terminal operations. Large-scale optimizatio ...
This paper investigates the control of an ML component within the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) devoted to black-box optimization. The known CMA-ES weakness is its sample complexity, the number of evaluations of the objective fun ...
Adaptive Optics (AO) improves the efficiency of the optical devices in confocal imaging systems by reducing wavefront aberrations. Aberration is caused by imperfections within the system and reduces the optical signal to noise ratio of the resultant images ...
Since the seminal work of Thrun [16], the learning to learn paradigm has been defined as the ability of an agent to improve its performance at each task with experience, with the number of tasks. Within the object categorization domain, the visual learning ...
The Distributed Constraint Optimization (DCOP) framework can be used to model a wide range of optimization problems that are inherently distributed. A distributed optimization problem can be viewed as a problem distributed over a set of agents, where agent ...
In this paper we present a survey of various algorithms for computing matrix geometric means and derive new second-order optimization algorithms to compute the Karcher mean. These new algorithms are constructed using the standard definition of the Riemanni ...
Linearizability is a key design methodology for reasoning about implementations of concurrent abstract data types in both shared memory and message passing systems. It provides the illusion that operations execute sequentially and fault-free, despite the a ...
Many state-of-the-art approaches for Multi Kernel Learning (MKL) struggle at finding a compromise between performance, sparsity of the solution and speed of the optimization process. In this paper we look at the MKL problem at the same time from a learning ...
Many state-of-the-art approaches for Multi Kernel Learning (MKL) struggle at finding a compromise between performance, sparsity of the solution and speed of the optimization process. In this paper we look at the MKL problem at the same time from a learning ...