Mathematical optimizationMathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Energy systemAn energy system is a system primarily designed to supply energy-services to end-users. The intent behind energy systems is to minimise energy losses to a negligible level, as well as to ensure the efficient use of energy. The IPCC Fifth Assessment Report defines an energy system as "all components related to the production, conversion, delivery, and use of energy". The first two definitions allow for demand-side measures, including daylighting, retrofitted building insulation, and passive solar building design, as well as socio-economic factors, such as aspects of energy demand management and remote work, while the third does not.
Scenario optimizationThe scenario approach or scenario optimization approach is a technique for obtaining solutions to robust optimization and chance-constrained optimization problems based on a sample of the constraints. It also relates to inductive reasoning in modeling and decision-making. The technique has existed for decades as a heuristic approach and has more recently been given a systematic theoretical foundation. In optimization, robustness features translate into constraints that are parameterized by the uncertain elements of the problem.
Energy policyEnergy policy is the manner in which a given entity (often governmental) has decided to address issues of energy development including energy conversion, distribution and use as well as reduction of greenhouse gas emissions in order to contribute to climate change mitigation. The attributes of energy policy may include legislation, international treaties, incentives to investment, guidelines for energy conservation, taxation and other public policy techniques. Energy is a core component of modern economies.
Multidisciplinary design optimizationMulti-disciplinary design optimization (MDO) is a field of engineering that uses optimization methods to solve design problems incorporating a number of disciplines. It is also known as multidisciplinary system design optimization (MSDO), and Multidisciplinary Design Analysis and Optimization (MDAO). MDO allows designers to incorporate all relevant disciplines simultaneously. The optimum of the simultaneous problem is superior to the design found by optimizing each discipline sequentially, since it can exploit the interactions between the disciplines.
Convex optimizationConvex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard.
Multi-objective optimizationMulti-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective is a type of vector optimization that has been applied in many fields of science, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives.
Energy conservationEnergy conservation is the effort to reduce wasteful energy consumption by using fewer energy services. This can be done by using energy more effectively (using less energy for continuous service) or changing one's behavior to use less service (for example, by driving less). Energy conservation can be achieved through efficient energy use, which has some advantages, including a reduction in greenhouse gas emissions and a smaller carbon footprint, as well as cost, water, and energy savings.
Grid energy storageGrid energy storage (also called large-scale energy storage) is a collection of methods used for energy storage on a large scale within an electrical power grid. Electrical energy is stored during times when electricity is plentiful and inexpensive (especially from intermittent power sources such as renewable electricity from wind power, tidal power and solar power) or when demand is low, and later returned to the grid when demand is high, and electricity prices tend to be higher.