Arctic sea ice ecology and historyThe Arctic sea ice covers less area in the summer than in the winter. The multi-year (i.e. perennial) sea ice covers nearly all of the central deep basins. The Arctic sea ice and its related biota are unique, and the year-round persistence of the ice has allowed the development of ice endemic species, meaning species not found anywhere else. There are differing scientific opinions about how long perennial sea ice has existed in the Arctic. Estimates range from 700,000 to 4 million years. The specialized, sympagic (i.
Ice shelfAn ice shelf is a large floating platform of ice that forms where a glacier or ice sheet flows down to a coastline and onto the ocean surface. Ice shelves are only found in Antarctica, Greenland, Northern Canada, and the Russian Arctic. The boundary between the floating ice shelf and the anchor ice (resting on bedrock) that feeds it is the grounding line. The thickness of ice shelves can range from about to . In contrast, sea ice is formed on water, is much thinner (typically less than ), and forms throughout the Arctic Ocean.
Thermodynamic cycleA thermodynamic cycle consists of linked sequences of thermodynamic processes that involve transfer of heat and work into and out of the system, while varying pressure, temperature, and other state variables within the system, and that eventually returns the system to its initial state. In the process of passing through a cycle, the working fluid (system) may convert heat from a warm source into useful work, and dispose of the remaining heat to a cold sink, thereby acting as a heat engine.
Thermodynamic equationsThermodynamics is expressed by a mathematical framework of thermodynamic equations which relate various thermodynamic quantities and physical properties measured in a laboratory or production process. Thermodynamics is based on a fundamental set of postulates, that became the laws of thermodynamics. One of the fundamental thermodynamic equations is the description of thermodynamic work in analogy to mechanical work, or weight lifted through an elevation against gravity, as defined in 1824 by French physicist Sadi Carnot.
Polar regions of EarthThe polar regions, also called the frigid zones or polar zones, of Earth are Earth's polar ice caps, the regions of the planet that surround its geographical poles (the North and South Poles), lying within the polar circles. These high latitudes are dominated by floating sea ice covering much of the Arctic Ocean in the north, and by the Antarctic ice sheet on the continent of Antarctica and the Southern Ocean in the south.
Second law of thermodynamicsThe second law of thermodynamics is a physical law based on universal experience concerning heat and energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unless energy in some form is supplied to reverse the direction of heat flow. Another definition is: "Not all heat energy can be converted into work in a cyclic process." The second law of thermodynamics in other versions establishes the concept of entropy as a physical property of a thermodynamic system.
Non-equilibrium thermodynamicsNon-equilibrium thermodynamics is a branch of thermodynamics that deals with physical systems that are not in thermodynamic equilibrium but can be described in terms of macroscopic quantities (non-equilibrium state variables) that represent an extrapolation of the variables used to specify the system in thermodynamic equilibrium. Non-equilibrium thermodynamics is concerned with transport processes and with the rates of chemical reactions.
Thermodynamic systemA thermodynamic system is a body of matter and/or radiation, considered as separate from its surroundings, and studied using the laws of thermodynamics. Thermodynamic systems may be isolated, closed, or open. An isolated system exchanges no matter or energy with its surroundings, whereas a closed system does not exchange matter but may exchange heat and experience and exert forces. An open system can interact with its surroundings by exchanging both matter and energy.
Thermodynamic diagramsThermodynamic diagrams are diagrams used to represent the thermodynamic states of a material (typically fluid) and the consequences of manipulating this material. For instance, a temperature–entropy diagram (T–s diagram) may be used to demonstrate the behavior of a fluid as it is changed by a compressor. Especially in meteorology they are used to analyze the actual state of the atmosphere derived from the measurements of radiosondes, usually obtained with weather balloons.
Climate changeIn common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is more rapid than previous changes, and is primarily caused by humans burning fossil fuels. Fossil fuel use, deforestation, and some agricultural and industrial practices increase greenhouse gases, notably carbon dioxide and methane.