Refinement for single-nanoparticle structure determination from low-quality single-shot coherent diffraction data
Related publications (73)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Diffractive optical elements are ultra-thin optical components required for a variety of applications because of their high design flexibility. We introduce a gradient-based optimization method based on a step-transition perturbation approach which is an e ...
Recently, a hexagonal phase has been reported in high carbon steels in several studies. Here, we show that the electron microscopy results used in these studies were erroneously interpreted. The extra-spots in the diffraction patterns and the odd contrasts ...
Diffractive optical elements with a large diffraction angle require feature sizes down to sub-wavelength dimensions, which require a rigorous electromagnetic computational model for calculation. However, the computational optimization of these diffractive ...
Homodyne X-ray diffraction signals produced by classical light and classical detectors are given by the modulus square of the charge density in momentum space vertical bar sigma(q)vertical bar(2), missing its phase, which is required in order to invert the ...
In this work we demonstrate the advantages of investigating diffractive optical elements in the phase domain. In this regime we can detect features that are not restrained by the diffraction limit and relate them to the geometrical and optical properties o ...
The generation of wide-angle diffraction patterns can be done in different ways using either thin diffractive optical elements with small features sizes or arrays of microoptics with large optical paths that are thick diffractive optical elements. Our aim ...
Nowadays, diffractive optical elements are used for a variety of applications because of their high design flexibility, compact size, and mass productivity. At the same time, they require having high and complex optical functionalities such as a large numb ...
We have recorded the diffraction patterns from individual xenon clusters irradiated with intense extreme ultraviolet pulses to investigate the influence of light-induced electronic changes on the scattering response. The clusters were irradiated with short ...
The transformation induced plasticity (TRIP) effect is investigated during a load path change using a cruciform sample. The transformation properties are followed by in-situ neutron diffraction derived from the central area of the cruciform sample. Additio ...
Characterizing and controlling the uniformity of nanoparticles is crucial for their application in science and technology because crystalline defects in the nanoparticles strongly affect their unique properties. Recently, ultra-short and ultra-bright X-ray ...