Modelling long-range interactions in multiscale simulations of ferromagnetic materials
Related publications (42)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This thesis presents combined experimental and theoretical investigations of nanoscale, surface-supported magnets based on rare earths (RE) to understand and control the magnetic properties down to the scale of single atoms. We present the effects of adato ...
Spin resonance provides the high-energy resolution needed to determine biological and material structures by sensing weak magnetic interactions(1). In recent years, there have been notable achievements in detecting(2) and coherently controlling(3-7) indivi ...
We study the directional excitation of optical surface waves controlled by the magnetic field of light. We theoretically predict that a spinning magnetic dipole develops a tunable unidirectional coupling of light to transverse electric (TE) polarized Bloch ...
Advances in growth technology of oxide materials allow single atomic layer control of heterostructures. In particular delta doping, a key materials' engineering tool in today's semiconductor technology, is now also available for oxides. Here we show that a ...
The treatment of dispersion interactions is ubiquitous but computationally demanding for seamless ab initio approaches. A highly popular and simple remedy consists in correcting for the missing interactions a posteriori by adding an attractive energy term ...
Magnetite nanoparticles with a size of 5-6 nm with potential impact on biomedicine and information/communication technologies were synthesized by thermal decomposition of Fe(acac)(3) and subsequently coated with a silica shell exploiting a water-in-oil syn ...
Single molecule magnets and single spin centres can be individually addressed when coupled to contacts forming an electrical junction. To control and engineer the magnetism of quantum devices, it is necessary to quantify how the structural and chemical env ...
Nanoparticles promise a variety of application in energy, medicine, and biology. However, most nanoparticlesâ material composition and shape cannot be tuned and so functions have thus far been limited. Moreover they are often also chemically unstable in ...
We investigate single CoFeB nanotubes with hexagonal cross section using dynamic cantilever magnetometry (DCM). We develop both an analytical model based on the Stoner-Wohlfarth approximation and a broadly applicable numerical framework for analyzing DCM m ...
High Cr (9-14% Cr) ferritic/martensitic steels are considered as one of the most promising candidates for structural materials for advanced nuclear power plants. Therefore, the understanding of the evolution of properties under operation conditions is of p ...