Trait-specific dispersal of bacteria in heterogeneous porous environments: from pore to porous medium scale
Related publications (35)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
While the biofilm growth mode conveys notable thriving advantages to bacterial populations, the mechanisms of biofilm formation are still strongly debated. Here, we investigate the remarkable spontaneous formation of regular spatial patterns during the gro ...
Hereditary retinal degenerations encompass a group of genetic diseases characterized by extreme clinical variability. Following next-generation sequencing and autozygome-based screening of patients presenting with a peculiar, recessive form of cone-dominat ...
Microfluidics and microtechnologies are of great interest for biological applications. This interest is linked to the fact that microtechnologies enable the study of single cells at the cellular and sub-cellular level. One of many applications of such sing ...
The atomic force microscope (AFM) allows the analysis of living microorganisms in physiological conditions on the nanometer scale. The observation of bacteria in physiological aqueous medium necessitates a robust immobilization of the bacterium to the surf ...
Caenorhabditis elegans is one of the most attractive model organisms in biomedical research for understanding human diseases and for drug testing at a whole-organism level, since many biological pathways and genes have been conserved between itself and hum ...
Single-cell imaging of host-microbe interactions over time is impeded by cellular motility because the cells under scrutiny tend to migrate out of the imaging field. To overcome this technical challenge, we developed a microfluidic platform for imaging hun ...
During the last decade, the development of optofluidic chips has become a large field of research. The integration of nano and microstructures with microfluidics layers allowed for the miniaturisation of a number of tools traditionally used in laboratories ...
Create a 3D micromodel (with microfluidics technique) as a representation of complex porous media (mimic groundwater environment); Experimental and numerical study of transport phenomenon in porous media ...
Microbial life in porous systems dominates the functioning of numerous ecosystems, ranging from stream sediments to soils. While these environments are characterized by structures that vary spatially over orders of magnitude, the traditional research focus ...
Recent studies show that soil eukaryotic diversity is immense and dominated by micro-organisms. However, it is unclear to what extent the processes that shape the distribution of diversity in plants and animals also apply to micro-organisms. Major diversif ...