Iterated functionIn mathematics, an iterated function is a function X → X (that is, a function from some set X to itself) which is obtained by composing another function f : X → X with itself a certain number of times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again in the function as input, and this process is repeated. For example on the image on the right: with the circle‐shaped symbol of function composition.
Three-body problemIn physics and classical mechanics, the three-body problem is the problem of taking the initial positions and velocities (or momenta) of three point masses and solving for their subsequent motion according to Newton's laws of motion and Newton's law of universal gravitation. The three-body problem is a special case of the n-body problem. Unlike two-body problems, no general closed-form solution exists, as the resulting dynamical system is chaotic for most initial conditions, and numerical methods are generally required.
Repeated gameIn game theory, a repeated game is an extensive form game that consists of a number of repetitions of some base game (called a stage game). The stage game is usually one of the well-studied 2-person games. Repeated games capture the idea that a player will have to take into account the impact of their current action on the future actions of other players; this impact is sometimes called their reputation. Single stage game or single shot game are names for non-repeated games.
Backward inductionBackward induction is the process of reasoning backwards in time, from the end of a problem or situation, to determine a sequence of optimal actions. It proceeds by examining the last point at which a decision is to be made and then identifying what action would be most optimal at that moment. Using this information, one can then determine what to do at the second-to-last time of decision. This process continues backwards until one has determined the best action for every possible situation (i.e.
Transportation theory (mathematics)In mathematics and economics, transportation theory or transport theory is a name given to the study of optimal transportation and allocation of resources. The problem was formalized by the French mathematician Gaspard Monge in 1781. In the 1920s A.N. Tolstoi was one of the first to study the transportation problem mathematically. In 1930, in the collection Transportation Planning Volume I for the National Commissariat of Transportation of the Soviet Union, he published a paper "Methods of Finding the Minimal Kilometrage in Cargo-transportation in space".
Cardinal utilityIn economics, a cardinal utility function or scale is a utility index that preserves preference orderings uniquely up to positive affine transformations. Two utility indices are related by an affine transformation if for the value of one index u, occurring at any quantity of the goods bundle being evaluated, the corresponding value of the other index v satisfies a relationship of the form for fixed constants a and b. Thus the utility functions themselves are related by The two indices differ only with respect to scale and origin.
SatisficingSatisficing is a decision-making strategy or cognitive heuristic that entails searching through the available alternatives until an acceptability threshold is met. The term satisficing, a portmanteau of satisfy and suffice, was introduced by Herbert A. Simon in 1956, although the concept was first posited in his 1947 book Administrative Behavior. Simon used satisficing to explain the behavior of decision makers under circumstances in which an optimal solution cannot be determined.