Classical nucleation theory predicts the shape of the nucleus in homogeneous solidification
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Nanoscopic and microscopic water droplets and ice crystals embedded in liquid hydrophobic surroundings are key components of aerosols, rocks, oil fields and the human body. The chemical properties of such droplets critically depend on the interfacial struc ...
Amorphous nanoparticles (a-NPs) have physicochemical properties distinctly different from those of the corresponding bulk crystals; for example, their solubility is much higher. However, many materials have a high propensity to crystallize and are difficul ...
American Association for the Advancement of Science2015
At the interface with solids, the mobility of liquid molecules tends to be reduced compared with bulk, often resulting in increased local order due to interactions with the surface of the solid. At room temperature, liquids such as water and methanol can f ...
In this study the effect of dust aerosol on upper tropospheric cirrus clouds through heterogeneous ice nucleation is investigated in the Community Atmospheric Model version 5 (CAM5) with two ice nucleation parameterizations. Both parameterizations consider ...
Understanding phase transitions of fluids confined within nanopores is important for a wide variety of technological applications. It is well known that fluids confined in nanopores typically demonstrate freezing-point depressions, ΔTf, described by the Gi ...
We study by computer simulation the nucleation of a supersaturated Lennard-Jones vapor into the liquid phase. The large free energy barriers to transition make the time scale of this process impossible to study by ordinary molecular dynamics simulations. T ...
Conducting mesoporous TiO2 is rapidly gaining importance for green energy applications. To optimise performance, its porosity and crystallinity must be carefully fine-tuned. To this end, we have performed a detailed study on the temperature dependence of T ...
The properties of the interface between solid and melt are key to solidification and melting, as the interfacial free energy introduces a kinetic barrier to phase transitions. This makes solidification happen below the melting temperature, in out-of-equili ...
Heterogeneous nucleation is governed by the interplay of interfacial energies between a substrate, a solid and a liquid. Although the intensity of these energies can strongly change with the orientation of the nucleus for anisotropic media, this parameter ...
Elsevier2011
, ,
In this paper we discuss how the information contained in atomistic simulations of homogeneous nucleation should be used when fitting the parameters in macroscopic nucleation models. We show how the number of solid and liquid atoms in such simulations can ...