**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Constraint-aware neural networks for Riemann problems

Abstract

Neural networks are increasingly used in complex (data-driven) simulations as surrogates or for accelerating the computation of classical surrogates. In many applications physical constraints, such as mass or energy conservation, must be satisfied to obtain reliable results. However, standard machine learning algorithms are generally not tailored to respect such constraints. We propose two different strategies to generate constraint-aware neural networks. We test their performance in the context of front-capturing schemes for strongly nonlinear wave motion in compressible fluid flow. Precisely in this context so-called Riemann problems have to be solved as surrogates. Their solution describes the local dynamics of the captured wave front in numerical simulations. Three model problems are considered: a cubic flux model problem, an isothermal two-phase flow model, and the Euler equations. We observe, that constraint-aware neural networks do not only account for the constraint but lead to an improvement of the numerical accuracy of the overall fluid simulation. (C) 2020 Elsevier Inc. All rights reserved.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (37)

Related MOOCs (32)

Related publications (60)

Ontological neighbourhood

Fluid dynamics

In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion). Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.

Euler equations (fluid dynamics)

In fluid dynamics, the Euler equations are a set of quasilinear partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity. The Euler equations can be applied to incompressible or compressible flow. The incompressible Euler equations consist of Cauchy equations for conservation of mass and balance of momentum, together with the incompressibility condition that the flow velocity is a solenoidal field.

Computer simulation

Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determined by comparing their results to the real-world outcomes they aim to predict. Computer simulations have become a useful tool for the mathematical modeling of many natural systems in physics (computational physics), astrophysics, climatology, chemistry, biology and manufacturing, as well as human systems in economics, psychology, social science, health care and engineering.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Applications

Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.

A unified numerical framework is presented for the modelling of multiphasic viscoelasticand elastic flows. The rheologies considered range from incompressible Newtonian orOldroyd-B viscoelastic fluids to Neo-Hookean elastic solids. The model is formulatedi ...

Naifu Peng, Ho Ling Li, Yue Yang

We report the mechanism and modeling for the formation of cavitylike structures on a planar interface subjected to a perturbed shock wave. The cavity is distinguished from bubbles and spikes formed in the standard Richtmyer-Meshkov instability (RMI). The t ...

To enforce the conservation of mass principle, a pressure Poisson equation arises in the numerical solution of incompressible fluid flow using the pressure-based segregated algorithms such as projection methods. For unsteady flows, the pressure Poisson equ ...

2023