Publication

Quadruplet Selection Methods For Deep Embedding Learning

Erhan Gündogdu
2019
Conference paper
Abstract

Recognition of objects with subtle differences has been used in many practical applications, such as car model recognition and maritime vessel identification. For discrimination of the objects in fine-grained detail, we focus on deep embedding learning by using a multi-task learning framework, in which the hierarchical labels (coarse and fine labels) of the samples are utilized both for classification and a quadruplet-based loss function. In order to improve the recognition strength of the learned features, we present a novel feature selection method specifically designed for four training samples of a quadruplet. By experiments, it is observed that the selection of very hard negative samples with relatively easy positive ones from the same coarse and fine classes significantly increases some performance metrics in a fine-grained dataset when compared to selecting the quadruplet samples randomly. The feature embedding learned by the proposed method achieves favorable performance against its state-of-the-art counterparts.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.