Physics beyond the Standard ModelPhysics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as spacetime singularities like the Big Bang and black hole event horizons.
Timeline of atomic and subatomic physicsA timeline of atomic and subatomic physics. In 6th century BCE, Acharya Kanada proposed that all matter must consist of indivisible particles and called them "anu". He proposes examples like ripening of fruit as the change in the number and types of atoms to create newer units.
Rydberg formulaIn atomic physics, the Rydberg formula calculates the wavelengths of a spectral line in many chemical elements. The formula was primarily presented as a generalization of the Balmer series for all atomic electron transitions of hydrogen. It was first empirically stated in 1888 by the Swedish physicist Johannes Rydberg, then theoretically by Niels Bohr in 1913, who used a primitive form of quantum mechanics. The formula directly generalizes the equations used to calculate the wavelengths of the hydrogen spectral series.
Lamb shiftIn physics the Lamb shift, named after Willis Lamb, refers to an anomalous difference in energy between two electron orbitals in a hydrogen atom. The difference was not predicted by theory and it cannot be derived from the Dirac equation, which predicts identical energies. Hence the Lamb shift refers to a deviation from theory seen in the differing energies contained by the 2S1/2 and 2P1/2 orbitals of the hydrogen atom.
Modern physicsModern physics is a branch of physics that developed in the early 20th century and onward or branches greatly influenced by early 20th century physics. Notable branches of modern physics include quantum mechanics, special relativity and general relativity. Classical physics is typically concerned with everyday conditions: speeds are much lower than the speed of light, sizes are much greater than that of atoms, and energies are relatively small.
Atomic theoryAtomic theory is the scientific theory that matter is composed of particles called atoms. The concept that matter is composed of discrete particles is an ancient idea, but gained scientific credence in the 18th and 19th centuries when scientists found it could explain the behaviors of gases and how chemical elements reacted with each other. By the end of the 19th century, atomic theory had gained widespread acceptance in the scientific community. The term "atom" comes from the Greek word atomos, which means "uncuttable".
Fine electronic structureIn solid state physics and physical chemistry, the fine electronic structure of a solid are the features of the electronic bands induced by intrinsic interactions between charge carriers. Valence and conduction bands split slightly compared to the difference between the various bands. Some mechanisms that allow it are angular momentum couplings, spin-orbit coupling, lattice distortions (Jahn–Teller effect), and other interactions described by crystal field theory.
Observer (quantum physics)Some interpretations of quantum mechanics posit a central role for an observer of a quantum phenomenon. The quantum mechanical observer is tied to the issue of observer effect, where a measurement necessarily requires interacting with the physical object being measured, affecting its properties through the interaction. The term "observable" has gained a technical meaning, denoting a Hermitian operator that represents a measurement.
Antiproton DeceleratorThe Antiproton Decelerator (AD) is a storage ring at the CERN laboratory near Geneva. It was built from the Antiproton Collector (AC) to be a successor to the Low Energy Antiproton Ring (LEAR) and started operation in the year 2000. Antiprotons are created by impinging a proton beam from the Proton Synchrotron on a metal target. The AD decelerates the resultant antiprotons to an energy of 5.3 MeV, which are then ejected to one of several connected experiments.
Frame-draggingFrame-dragging is an effect on spacetime, predicted by Albert Einstein's general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary field is one that is in a steady state, but the masses causing that field may be non-static — rotating, for instance. More generally, the subject that deals with the effects caused by mass–energy currents is known as gravitoelectromagnetism, which is analogous to the magnetism of classical electromagnetism.