Publication

Strain glass transition of cobalt phase in a cemented carbide

Daniele Mari, Samy Adjam
2020
Journal paper
Abstract

Cemented carbides are hard materials used for the fabrication of cutting tools. They consist of hard micron or sub-micron carbide grains held together in a matrix of a tough metallic binder such as cobalt. The understanding and control of cobalt characteristics are of crucial importance to improve the mechanical properties of WC-Co cemented carbide materials. Indeed, cobalt controls the toughness of the material and its properties seem to condition the durability of cemented carbides. At low temperature, pure cobalt is normally found in hcp structure, while above 426 degrees C (700 K) it changes to fcc crystalline structure. Remarkably, in cemented carbides, cobalt appears even at low temperature as fcc, otherwise as a mixture of fcc and hcp. It is unsure if these crystal structures are due to the presence of internal stresses or due to W and C soluted atoms. However, this paper demonstrates that cobalt in WC-10wt.%Co cemented carbide may show some characteristics of a glass transition at around 669 degrees C (942 K) in the 1 Hz frequency range, inducing a glassy state to cobalt, which is of great interest from a fundamental point of view, however challenging to control in materials technology.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (33)
Crystal structure
In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions, or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns that repeat along the principal directions of three-dimensional space in matter. The smallest group of particles in the material that constitutes this repeating pattern is the unit cell of the structure.
Tungsten carbide
Tungsten carbide (chemical formula: WC) is a chemical compound (specifically, a carbide) containing equal parts of tungsten and carbon atoms. In its most basic form, tungsten carbide is a fine gray powder, but it can be pressed and formed into shapes through sintering for use in industrial machinery, cutting tools, chisels, abrasives, armor-piercing shells and jewelry. Tungsten carbide is approximately twice as stiff as steel, with a Young's modulus of approximately 530–700 GPa, and is double the density of steel.
Structure factor
In condensed matter physics and crystallography, the static structure factor (or structure factor for short) is a mathematical description of how a material scatters incident radiation. The structure factor is a critical tool in the interpretation of scattering patterns (interference patterns) obtained in X-ray, electron and neutron diffraction experiments. Confusingly, there are two different mathematical expressions in use, both called 'structure factor'.
Show more
Related publications (33)

New methods for structure determination and speciation by NMR crystallography

Martins Balodis

NMR crystallography has been around for half a century, but with the advent of NMR crystal structure determination protocols in the last decade it has shown perspectives that were not seen before. Amalgamation of NMR and crystal structure determination has ...
EPFL2022

Optimization of composition and structure of cemented carbide cutting tools

Samy Adjam

WC-Co cemented carbides are composites, which combine a hard phase consisting of WC grains and a metallic ductile phase as a binder. Their excellent mechanical properties, combining high hardness, toughness and refractory properties, make them excellent ma ...
EPFL2021

Comparing crystal structures with symmetry and geometry

Anirudh Raju Natarajan

Measuring the similarity between two arbitrary crystal structures is a common challenge in crystallography and materials science. Although there are an infinite number of ways to mathematically relate two crystal structures, only a few are physically meani ...
2021
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.