Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Long-term biointegration of man-made neural interfaces is influenced by the mechanical properties of the implant materials. Substantial experimental work currently aims at replacing conventional hard implant materials with soft alternatives that can favour a lower immune response. Here we assess the performance of a soft electrode array implanted in the spinal epidural space of a minipig model for a period of 6 months. The electrode array includes platinum-silicone electrode contacts and elastic thin-film gold interconnects embedded in silicone. In-vivo electrode impedance and voltage transients were monitored over time. Following implantation, epidural stimulation produced muscle-specific evoked potentials and visible muscle contractions. Over time, postoperative and stimulation induced changes in electrode impedance were observed. Such trends provide a basis for future technological improvements aiming at ensuring the stability of soft implantable electrodes for neural interfacing.
Grégoire Courtine, Jocelyne Bloch, Robin Jonathan Demesmaeker, Fabien Bertrand Paul Wagner, Karen Minassian, Salif Axel Komi
Grégoire Courtine, Jocelyne Bloch, Eduardo Martin Moraud, Jordan Squair, Léonie Asboth, Tomislav Milekovic, Robin Jonathan Demesmaeker