Symplectic dynamical low rank approximation of wave equations with random parameters
Related publications (62)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paperwe obtain a global characterization of the dynamics of even solutions to the one-dimensional nonlinear Klein–Gordon (NLKG) equation on the line with focusing nonlinearity |u|p−1u, p > 5, provided their energy exceeds that of the ground state o ...
We analyze the internal permutations of Keccak, one of the NIST SHA-3 competition finalists, in regard to differential properties. By carefully studying the elements composing those permutations, we are able to derive most of the best known differential pa ...
A class of Neumann type systems are derived separating the spatial and temporal variables for the 2+1 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada (CDGKS) equation and the modified Korteweg-de Vries (mKdV) hierarchy. The Lax-Moser matrix of Neumann type s ...
Numerous dimensionality reduction problems in data analysis involve the recovery of low-dimensional models or the learning of manifolds underlying sets of data. Many manifold learning methods require the estimation of the tangent space of the manifold at a ...
In this paper we propose and analyze a stochastic collocation method for solving the second order wave equation with a random wave speed and subjected to deterministic boundary and initial conditions. The speed is piecewise smooth in the physical space and ...
The important task of evaluating the impact of random parameters on the output of stochastic ordinary differential equations (SODE) can be computationally very demanding, in particular for problems with a high-dimensional parameter space. In this work we c ...
We consider an elastic chain at thermodynamic equilibrium with a heat bath, and derive an approximation to the probability density function, or pdf, governing the relative location and orientation of the two ends of the chain. Our motivation is to exploit ...
The equations of motion are derived for the dynamical folding of charged molecular strands (such as DNA) modeled as flexible continuous filamentary distributions of interacting rigid charge conformations. The new feature is that these equations are nonloca ...
The goal of this paper is to derive the Hamiltonian structure of polarized and magnetized Euler-Maxwell fluids by reduction of the canonical symplectic form on phase space, and to generalize the dynamics to the nonabelian case. The Hamiltonian function we ...
Motivated by the problem of longitudinal data assimilation, e.g., in the registration of a sequence of images, we develop the higher-order framework for Lagrangian and Hamiltonian reduction by symmetry in geometric mechanics. In particular, we obtain the r ...