**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Simple Realizability of Complete Abstract Topological Graphs Simplified

Abstract

An abstract topological graph (briefly an AT-graph) is a pair A = (G, X) where G = (V, E) is a graph and X. E2 is a set of pairs of its edges. The AT-graph A is simply realizable if G can be drawn in the plane so that each pair of edges from X crosses exactly once and no other pair crosses. We showthat simply realizable complete AT-graphs are characterized by a finite set of forbidden AT-subgraphs, each with at most six vertices. This implies a straightforward polynomial algorithm for testing simple realizability of complete AT-graphs, which simplifies a previous algorithm by the author. We also show an analogous result for independent Z2-realizability, where only the parity of the number of crossings for each pair of independent edges is specified.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (36)

Related MOOCs (11)

Planar graph

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

Line graph

In the mathematical discipline of graph theory, the line graph of an undirected graph G is another graph L(G) that represents the adjacencies between edges of G. L(G) is constructed in the following way: for each edge in G, make a vertex in L(G); for every two edges in G that have a vertex in common, make an edge between their corresponding vertices in L(G). The name line graph comes from a paper by although both and used the construction before this.

Complete graph

In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is connected by a pair of unique edges (one in each direction). Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of Königsberg. However, drawings of complete graphs, with their vertices placed on the points of a regular polygon, had already appeared in the 13th century, in the work of Ramon Llull.

Related publications (131)

Analyse I

Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond

Analyse I (partie 1) : Prélude, notions de base, les nombres réels

Concepts de base de l'analyse réelle et introduction aux nombres réels.

Analyse I (partie 2) : Introduction aux nombres complexes

Introduction aux nombres complexes

Volkan Cevher, Grigorios Chrysos, Efstratios Panteleimon Skoulakis

This work presents a graph neural network (GNN) framework for solving the maximum independent set (MIS) problem, inspired by dynamic programming (DP). Specifically, given a graph, we propose a DP-like recursive algorithm based on GNNs that firstly construc ...

2023When can a unimodular random planar graph be drawn in the Euclidean or the hyperbolic plane in a way that the distribution of the random drawing is isometry-invariant? This question was answered for one-ended unimodular graphs in Benjamini and Timar, using ...

Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...