Publication

Pure Spin Current and Magnon Chemical Potential in a Nonequilibrium Magnetic Insulator

Kyongmo An, Li Shi
2020
Journal paper
Abstract

Nonequilibrium phenomena are ubiquitous in nature and in a wide range of systems, including cold atomic gases and solid-state materials. While these phenomena are challenging to describe both theoretically and experimentally, they are essential for the fundamental understanding of many-body systems and practical devices. In the context of spintronics, when a magnetic insulator (MI) is subjected to a thermal gradient, a pure spin current is generated in the form of magnons without the presence and dissipation of a charge current-attractive for reducing energy consumption and central to the emerging field of spin caloritronics. However, the experimental methods for directly quantifying a spin current in insulators and for probing local phonon-magnon nonequilibrium and the associated magnon chemical potential are largely missing. Here, we apply a heating laser to generate a thermal gradient in the MI yttrium iron garnet (YIG), Y3Fe5O12, and evaluate two components of the spin current, driven by temperature and chemical potential gradients, respectively. The experimental method and theory approach for evaluating quasiparticle chemical potential can be applied for analogous phenomena in other many-body systems.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Solid-state chemistry
Solid-state chemistry, also sometimes referred as materials chemistry, is the study of the synthesis, structure, and properties of solid phase materials. It therefore has a strong overlap with solid-state physics, mineralogy, crystallography, ceramics, metallurgy, thermodynamics, materials science and electronics with a focus on the synthesis of novel materials and their characterization. A diverse range of synthetic techniques, such as the ceramic method and chemical vapour depostion, make solid-state materials.
Solid-state physics
Solid-state physics is the study of rigid matter, or solids, through methods such as solid-state chemistry, quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the large-scale properties of solid materials result from their atomic-scale properties. Thus, solid-state physics forms a theoretical basis of materials science. Along with solid-state chemistry, it also has direct applications in the technology of transistors and semiconductors.
Static forces and virtual-particle exchange
Static force fields are fields, such as a simple electric, magnetic or gravitational fields, that exist without excitations. The most common approximation method that physicists use for scattering calculations can be interpreted as static forces arising from the interactions between two bodies mediated by virtual particles, particles that exist for only a short time determined by the uncertainty principle. The virtual particles, also known as force carriers, are bosons, with different bosons associated with each force.
Show more
Related publications (35)

Unearthing the foundational role of anharmonicity in heat transport in glasses

Paolo Pegolo

The time-honored Allen -Feldman theory of heat transport in glasses is generally assumed to predict a finite value for the thermal conductivity, even if it neglects the anharmonic broadening of vibrational normal modes. We demonstrate that the harmonic app ...
Amer Physical Soc2024

Assessing the persistence of chalcogen bonds in solution with neural network potentials

Rubén Laplaza Solanas, Frédéric Célerse, Veronika Juraskova

Non-covalent bonding patterns are commonly harvested as a design principle in the field of catalysis, supramolecular chemistry, and functional materials to name a few. Yet, their computational description generally neglects finite temperature and environme ...
2022

Solid-state synthesis of a MOF/polymer composite for hydrodeoxygenation of vanillin

Wendy Lee Queen, Olga Trukhina, Dragos-Constantin Stoian, Vikram Vinayak Karve

A new solid-state method was used to introduce a furan-thiourea polymer into the pores of a MOF, Cr-BDC. Next, the activity of the new MOF-polymer composite containing Pd was assessed in the catalytic hydrodeoxygenation of vanillin, a biomass derived chemi ...
ROYAL SOC CHEMISTRY2022
Show more
Related MOOCs (21)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more