**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Normal approximation of the solution to the stochastic heat equation with Levy noise

Abstract

Given a sequence L & x2d9;epsilon of Levy noises, we derive necessary and sufficient conditions in terms of their variances sigma 2(epsilon) such that the solution to the stochastic heat equation with noise sigma(epsilon)-1L & x2d9;epsilon converges in law to the solution to the same equation with Gaussian noise. Our results apply to both equations with additive and multiplicative noise and hence lift the findings of Asmussen and Rosinski (J Appl Probab 38(2):482-493, 2001), Cohen and Rosinski (Bernoulli 13(1):195-210, 2007) for finite-dimensional Levy processes to the infinite-dimensional setting without making distributional assumptions on the solutions such as infinite divisibility. One important ingredient of our proof is to characterize the solution to the limit equation by a sequence of martingale problems. To this end, it is crucial to view the solution processes both as random fields and as cadlag processes with values in a Sobolev space of negative real order.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (12)

Related publications (2)

Lévy process

In probability theory, a Lévy process, named after the French mathematician Paul Lévy, is a stochastic process with independent, stationary increments: it represents the motion of a point whose successive displacements are random, in which displacements in pairwise disjoint time intervals are independent, and displacements in different time intervals of the same length have identical probability distributions. A Lévy process may thus be viewed as the continuous-time analog of a random walk.

Heat equation

In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region. As the prototypical parabolic partial differential equation, the heat equation is among the most widely studied topics in pure mathematics, and its analysis is regarded as fundamental to the broader field of partial differential equations.

White noise

In signal processing, white noise is a random signal having equal intensity at different frequencies, giving it a constant power spectral density. The term is used, with this or similar meanings, in many scientific and technical disciplines, including physics, acoustical engineering, telecommunications, and statistical forecasting. White noise refers to a statistical model for signals and signal sources, rather than to any specific signal.

Robert Dalang, Carsten Hao Ye Chong, Thomas Marie Jean-Baptiste Humeau

We consider sample path properties of the solution to the stochastic heat equation, in Rd or bounded domains of Rd, driven by a Levy space-time white noise. When viewed as a stochastic process in time

Thomas Marie Jean-Baptiste Humeau

We study various aspects of stochastic partial differential equations driven by Lévy white noise. This driving noise, which is a generalization of Gaussian white noise, can be viewed either as a gener