Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In-memory computing using resistive memory devices is a promising non-von Neumann approach for making energy-efficient deep learning inference hardware. However, due to device variability and noise, the network needs to be trained in a specific way so that transferring the digitally trained weights to the analog resistive memory devices will not result in significant loss of accuracy. Here, we introduce a methodology to train ResNet-type convolutional neural networks that results in no appreciable accuracy loss when transferring weights to phase-change memory (PCM) devices. We also propose a compensation technique that exploits the batch normalization parameters to improve the accuracy retention over time. We achieve a classification accuracy of 93.7% on CIFAR-10 and a top-1 accuracy of 71.6% on ImageNet benchmarks after mapping the trained weights to PCM. Our hardware results on CIFAR-10 with ResNet-32 demonstrate an accuracy above 93.5% retained over a one-day period, where each of the 361,722 synaptic weights is programmed on just two PCM devices organized in a differential configuration. Designing deep learning inference hardware based on in-memory computing remains a challenge. Here, the authors propose a strategy to train ResNet-type convolutional neural networks which results in reduced accuracy loss when transferring weights to in-memory computing hardware based on phase-change memory.
Anastasia Ailamaki, Periklis Chrysogelos, Hamish Mcniece Hill Nicholson, Syed Mohammad Aunn Raza
Anastasia Ailamaki, Viktor Sanca, Hamish Mcniece Hill Nicholson, Andreea Nica, Syed Mohammad Aunn Raza