Phase-change memory (also known as PCM, PCME, PRAM, PCRAM, OUM (ovonic unified memory) and C-RAM or CRAM (chalcogenide RAM)) is a type of non-volatile random-access memory. PRAMs exploit the unique behaviour of chalcogenide glass. In PCM, heat produced by the passage of an electric current through a heating element generally made of titanium nitride is used to either quickly heat and quench the glass, making it amorphous, or to hold it in its crystallization temperature range for some time, thereby switching it to a crystalline state. PCM also has the ability to achieve a number of distinct intermediary states, thereby having the ability to hold multiple bits in a single cell, but the difficulties in programming cells in this way has prevented these capabilities from being implemented in other technologies (most notably flash memory) with the same capability.
Recent research on PCM has been directed towards attempting to find viable material alternatives to the phase-change material Ge2Sb2Te5 (GST), with mixed success. Other research has focused on the development of a GeTe–Sb2Te3 superlattice to achieve non-thermal phase changes by changing the co-ordination state of the germanium atoms with a laser pulse. This new Interfacial Phase-Change Memory (IPCM) has had many successes and continues to be the site of much active research.
Leon Chua has argued that all two-terminal non-volatile-memory devices, including PCM, should be considered memristors. Stan Williams of HP Labs has also argued that PCM should be considered a memristor. However, this terminology has been challenged, and the potential applicability of memristor theory to any physically realizable device is open to question.
In the 1960s, Stanford R. Ovshinsky of Energy Conversion Devices first explored the properties of chalcogenide glasses as a potential memory technology. In 1969, Charles Sie published a dissertation at Iowa State University that both described and demonstrated the feasibility of a phase-change-memory device by integrating chalcogenide film with a diode array.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides the trends in nanoelectronics for scaling, better performances and lower energy per function. It covers fundamental phenomena of nanoscale devices, beyond CMOS steep slope switche
3D XPoint (pronounced three-D cross point) is a discontinued non-volatile memory (NVM) technology developed jointly by Intel and Micron Technology. It was announced in July 2015 and was available on the open market under the brand name Optane (Intel) from April 2017 to July 2022. Bit storage is based on a change of bulk resistance, in conjunction with a stackable cross-grid data access array. Initial prices are less than dynamic random-access memory (DRAM) but more than flash memory.
A solid-state drive (SSD) is a solid-state storage device that uses integrated circuit assemblies to store data persistently, typically using flash memory, and functioning as secondary storage in the hierarchy of computer storage. It is also sometimes called a semiconductor storage device, a solid-state device or a solid-state disk, even though SSDs lack the physical spinning disks and movable read–write heads used in hard disk drives (HDDs) and floppy disks. SSD also has rich internal parallelism for data processing.
An optical disc is a flat, usually disc-shaped object that stores information in the form of physical variations on its surface that can be read with the aid of a beam of light. Optical discs can be reflective, where the light source and detector are on the same side of the disc, or transmissive, where light shines through the disc to the be detected on the other side. Optical discs can store analog information (e.g. Laserdisc), digital information (e.g. DVD), or store both on the same disc (e.g. CD Video).
Discusses challenges in building physical neural networks, focusing on depth, connections, and trainability.
Covers memory classification, organization, and design of semiconductor memories like SRAM, DRAM, and MRAM.
Machine learning and data processing algorithms have been thriving in finding ways of processing and classifying information by exploiting the hidden trends of large datasets. Although these emerging computational methods have become successful in today's ...
Two-dimensional materials (2DMs) have found potential applications in many areas of electronics, such as sensing, memory systems, optoelectronics, and power. Despite an intense experimental work, the literature is lacking of accurate modeling of nonvolatil ...
In this thesis work, we propose to exploit an innovative micro/nano-fabrication process, based on controlled fluid instabilities of a thin viscous film of chalcogenide glass. Amorphous selenium and arsenic triselenide were used in this thesis work, and com ...