Stability and Degradation Mechanisms of Copper-Based Catalysts for Electrochemical CO2 Reduction
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The electrochemical CO2 reduction reaction (CO2RR) is envisioned to play a significant role in achieving carbon neutrality while contributing to storing renewable energies. Cu-based materials are among the most promising electrocatalysts. However, 16 diffe ...
The Cu-3d states in the high-T-c cuprates are often described as a single band of 3d(x2-y2) states, with the other four 3d states having about 2 to 3 eV higher energy due to the lower-than-octahedral crystal field at the copper sites. However, excitations ...
Renewable energy sources offer a promising solution for mitigating sustainability and CO2 emissions-related issues due to their vast energy generation capacity. They enable hydrogen production via water electrolysis, as well as carbon capture and utilizati ...
Solar-driven carbon dioxide reduction has witnessed a renaissance in the past decades, but the system suffers from low reaction rates. Here the authors develop a copper/tin-oxide electrocatalyst, achieving a new benchmark solar-to-CO energy conversion effi ...
The carbon-neutral production of fuels and chemical feedstocks is one of the grand challenges for our society to solve. The electrochemical conversion of CO2 is emerging as a promising technology contributing to this goal. Despite the huge amount of progre ...
The ability to tailor make materials with atomic scale precision is crucial for understanding the sensitivities of their performance parameters and for achieving the design specification corresponding to optimal device operation. Herein, this topic is disc ...
Size, morphology, and surface sites of electrocatalysts have a major impact on their performance. Understanding how, when, and why these parameters change under operating conditions is of importance for designing stable, active, and selective catalysts. He ...
Electrochemical reduction of carbon dioxide is a promising approach to decrease the amount of anthropogenic CO2 being released into the atmosphere, provided that a surplus of renewable electrical energy is available. Copper based materials are at the cente ...
Electrochemical CO2 reduction (eCO2RR) towards value-added chemicals, powered by renewable electricity, is a promising technology for storing the intermittent renewable energy in the form of chemical bonds. Among the various products of eCO2RR, multi-carbo ...
The electrochemical CO2 reduction reaction (CO2RR) has the potential to mitigate the rising CO2 levels while storing renewable energy in chemical bonds. Copper is the only single metal electrocatalyst producing high energy dense hydrocarbons, albeit into 1 ...