Publication

Regret Minimization and Separation in Multi-Bidder Multi-Item Auctions

Abstract

We study a robust auction design problem with a minimax regret objective, where a seller seeks a mechanism for selling multiple items to multiple anonymous bidders with additive values. The seller knows that the bidders' values range over a box uncertainty set but has no information about their probability distribution. This auction design problem can be viewed as a zero-sum game between the seller, who chooses a mechanism, and a fictitious adversary or `nature,' who chooses the bidders' values from within the uncertainty set with the aim to maximize the seller's regret. We characterize the Nash equilibrium of this game analytically. The Nash strategy of the seller is a mechanism that sells each item via a separate auction akin to a second price auction with a random reserve price. The Nash strategy of nature is mixed and constitutes a probability distribution on the uncertainty set under which each bidder's values for the items are comonotonic.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.