Therapy software for enhancing numerical cognition
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This doctoral thesis focuses on a particular aspect of architectural learning as embodied cognition by studying, from a multidisciplinary approach, the creative processes and design actions that accompany the conception and construction of space. Due to th ...
USP- Universidad San Pablo CEU, Madrid, Spain.2023
The motor learning process entails plastic changes in the brain, especially in brain network reconfigurations. In the current study, we sought to characterize motor learning by determining changes in the coupling behaviour between the brain functional and ...
Machine learning is often cited as a new paradigm in control theory, but is also often viewed as empirical and less intuitive for students than classical model-based methods. This is particularly the case for reinforcement learning, an approach that does n ...
We propose ordering-based approaches for learning the maximal ancestral graph (MAG) of a structural equation model (SEM) up to its Markov equivalence class (MEC) in the presence of unobserved variables. Existing ordering-based methods in the literature rec ...
Association for the Advancement of Artificial Intelligence (AAAI)2023
Order, regularities, and patterns are ubiquitous around us. A flock of birds maneuvering in the sky, the self-organization of social insects, a global pandemic or a traffic jam are examples of complex systems where the macroscopic patterns arise from the m ...
In this master thesis, multi-agent reinforcement learning is used to teach robots to build a self-supporting structure connecting two points. To accomplish this task, a physics simulator is first designed using linear programming. Then, the task of buildin ...
Nowadays, the integration of home automation systems with smart thermostats is a common trend, designed to enhance resident comfort and conserve energy. The introduction of smart thermostats that can run machine learning algorithms has opened the door for ...
This letter, addressed to a creature taking the form of a human chimera gathering the thoughts and knowledge of people who inspire and accompany us, recounts the experiences, affects and issues related to our first semester of teaching the course named DRA ...
This article reviews significant advances in networked signal and information processing (SIP), which have enabled in the last 25 years extending decision making and inference, optimization, control, and learning to the increasingly ubiquitous environments ...
We propose two deep learning models that fully automate shape parameterization for aerodynamic shape optimization. Both models are optimized to parameterize via deep geometric learning to embed human prior knowledge into learned geometric patterns, elimina ...