Decay productIn nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps (decay chain). For example, 238U decays to 234Th which decays to 234mPa which decays, and so on, to 206Pb (which is stable): In this example: 234Th, 234mPa,...,206Pb are the decay products of 238U. 234Th is the daughter of the parent 238U. 234mPa (234 metastable) is the granddaughter of 238U.
Alpha particleAlpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produced in other ways. Alpha particles are named after the first letter in the Greek alphabet, α. The symbol for the alpha particle is α or α2+. Because they are identical to helium nuclei, they are also sometimes written as He2+ or 42He2+ indicating a helium ion with a +2 charge (missing its two electrons).
Baryon numberIn particle physics, the baryon number is a strictly conserved additive quantum number of a system. It is defined as where n_{\rm q} is the number of quarks, and n_{\rm \overline q} is the number of antiquarks. Baryons (three quarks) have a baryon number of +1, mesons (one quark, one antiquark) have a baryon number of 0, and antibaryons (three antiquarks) have a baryon number of −1. Exotic hadrons like pentaquarks (four quarks, one antiquark) and tetraquarks (two quarks, two antiquarks) are also classified as baryons and mesons depending on their baryon number.
Limit inferior and limit superiorIn mathematics, the limit inferior and limit superior of a sequence can be thought of as limiting (that is, eventual and extreme) bounds on the sequence. They can be thought of in a similar fashion for a function (see limit of a function). For a set, they are the infimum and supremum of the set's limit points, respectively. In general, when there are multiple objects around which a sequence, function, or set accumulates, the inferior and superior limits extract the smallest and largest of them; the type of object and the measure of size is context-dependent, but the notion of extreme limits is invariant.
Electron captureElectron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. This process thereby changes a nuclear proton to a neutron and simultaneously causes the emission of an electron neutrino. Proton + Electron → Neutron + Electron Neutrino or when written as a nuclear reaction equation, ^{0}{-1}e + ^{1}{1}p -> ^{1}{0}n + ^{0}{0} ν Since this single emitted neutrino carries the entire decay energy, it has this single characteristic energy.
Four-momentumIn special relativity, four-momentum (also called momentum–energy or momenergy) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is a four-vector in spacetime. The contravariant four-momentum of a particle with relativistic energy E and three-momentum p = (px, py, pz) = γmv, where v is the particle's three-velocity and γ the Lorentz factor, is The quantity mv of above is ordinary non-relativistic momentum of the particle and m its rest mass.
Double beta decayIn nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move closer to the optimal ratio of protons and neutrons. As a result of this transformation, the nucleus emits two detectable beta particles, which are electrons or positrons. The literature distinguishes between two types of double beta decay: ordinary double beta decay and neutrinoless double beta decay.
Limit of a functionAlthough the function \tfrac{\sin x}{x} is not defined at zero, as x becomes closer and closer to zero, \tfrac{\sin x}{x} becomes arbitrarily close to 1. In other words, the limit of \tfrac{\sin x}{x}, as x approaches zero, equals 1. In mathematics, the limit of a function is a fundamental concept in calculus and analysis concerning the behavior of that function near a particular input. Formal definitions, first devised in the early 19th century, are given below. Informally, a function f assigns an output f(x) to every input x.
Koide formulaThe Koide formula is an unexplained empirical equation discovered by Yoshio Koide in 1981. In its original form, it is not fully empirical but a set of guesses for a model for masses of quarks and leptons, as well as CKM angles. From this model it survives the observation about the masses of the three charged leptons; later authors have extended the relation to neutrinos, quarks, and other families of particles. The Koide formula is where the masses of the electron, muon, and tau are measured respectively as m_e = 0.
AntiprotonThe antiproton, _Antiproton, (pronounced p-bar) is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy. The existence of the antiproton with electric charge of -1e, opposite to the electric charge of +1e of the proton, was predicted by Paul Dirac in his 1933 Nobel Prize lecture.