Publication

Large Suspended Monolayer and Bilayer Graphene Membranes with Diameter up to 750 mu m

Abstract

In this paper ultra clean monolayer and bilayer Chemical Vapor Deposited (CVD) graphene membranes with diameters up to 500 mu m and 750 mu m, respectively have been fabricated using Inverted Floating Method (IFM) followed by thermal annealing in vacuum. The yield decreases with size but we show the importance of choosing a good graphene raw material. Dynamic mechanical properties of the membranes at room temperature in different diameters are measured before and after annealing. The quality factor ranges from 200 to 2000 and shows no clear dependence on the size. The resonance frequency is inversely proportional to the diameter of the membranes. We observe a reduction of the effective intrinsic stress in the graphene, as well as of the relative error in the determination of said stress after thermal annealing. These measurements show that it is possible to produce graphene membranes with reproducible and excellent mechanical properties.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Graphene
Graphene (ˈgræfiːn) is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure. The name is derived from "graphite" and the suffix -ene, reflecting the fact that the graphite allotrope of carbon contains numerous double bonds. Each atom in a graphene sheet is connected to its three nearest neighbors by σ-bonds and a delocalised π-bond, which contributes to a valence band that extends over the whole sheet.
Graphite oxide
Graphite oxide (GO), formerly called graphitic oxide or graphitic acid, is a compound of carbon, oxygen, and hydrogen in variable ratios, obtained by treating graphite with strong oxidizers and acids for resolving of extra metals. The maximally oxidized bulk product is a yellow solid with C:O ratio between 2.1 and 2.9, that retains the layer structure of graphite but with a much larger and irregular spacing.
Potential applications of graphene
Potential graphene applications include lightweight, thin, and flexible electric/photonics circuits, solar cells, and various medical, chemical and industrial processes enhanced or enabled by the use of new graphene materials. In 2008, graphene produced by exfoliation was one of the most expensive materials on Earth, with a sample the area of a cross section of a human hair costing more than 1,000asofApril2008(about1,000 as of April 2008 (about 100,000,000/cm2). Since then, exfoliation procedures have been scaled up, and now companies sell graphene in large quantities.
Show more
Related publications (37)

Functionalized Å-scale Pores in Graphene for Carbon Capture

Kuang-Jung Hsu

Single-layer graphene, hosting a high density of functionalized molecular-sieving atom-thick pores, is considered to be an excellent material for gas separation membranes. These functionalized atom-thick pores enable the shortest transport pathway across t ...
EPFL2024

Graphene membranes with pyridinic nitrogen at pore edges for high-performance CO2 capture

Kumar Varoon Agrawal, Kuang-Jung Hsu, Marina Micari, Xuekui Duan, Shuqing Song, Luis Francisco Villalobos Vazquez de la Parra, Shiqi Huang, Shaoxian Li, Heng-Yu Chi, Liping Zhong

Membranes based on a porous two-dimensional selective layer offer the potential to achieve exceptional performance to improve energy efficiency and reduce the cost for carbon capture. So far, separation from two-dimensional pores has exploited differences ...
Nature Portfolio2024

Mechanistic study on the evolution of vacancies in graphene by oxidation by scanning tunneling microscopy

Shaoxian Li

Nanostructured graphitic materials, including graphene hosting Å to nanometer-sized pores, have attracted attention for various applications such as separations, sensors, and energy storage. Graphene with Å-scale pores is a promising next-generation materi ...
EPFL2023
Show more
Related MOOCs (10)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.