Publication

Advanced Machine Learning Techniques for Self-Interference Cancellation in Full-Duplex Radios

Abstract

In-band full-duplex systems allow for more efficient use of temporal and spectral resources by transmitting and receiving information at the same time and on the same frequency. However, this creates a strong self-interference signal at the receiver, making the use of self-interference cancellation critical. Recently, neural networks have been used to perform digital self-interference with lower computational complexity compared to a traditional polynomial model. In this paper, we examine the use of advanced neural networks, such as recurrent and complex-valued neural networks, and we perform an in-depth network architecture exploration. Our neural network architecture exploration reveals that complex-valued neural networks can significantly reduce both the number of floating-point operations and parameters compared to a polynomial model, whereas the real-valued networks only reduce the number of floating-point operations. For example, at a digital self-interference cancellation of 44:51dB, a complex-valued neural network requires 33:7% fewer floating-point operations and 26:9% fewer parameters compared to the polynomial model.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Artificial neural network
Artificial neural networks (ANNs, also shortened to neural networks (NNs) or neural nets) are a branch of machine learning models that are built using principles of neuronal organization discovered by connectionism in the biological neural networks constituting animal brains. An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit a signal to other neurons.
Types of artificial neural networks
There are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Recurrent neural network
A recurrent neural network (RNN) is one of the two broad types of artificial neural network, characterized by direction of the flow of information between its layers. In contrast to uni-directional feedforward neural network, it is a bi-directional artificial neural network, meaning that it allows the output from some nodes to affect subsequent input to the same nodes. Their ability to use internal state (memory) to process arbitrary sequences of inputs makes them applicable to tasks such as unsegmented, connected handwriting recognition or speech recognition.
Show more
Related publications (36)

Deep Learning Generalization with Limited and Noisy Labels

Mahsa Forouzesh

Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
EPFL2023

Expectation consistency for calibration of neural networks

Florent Gérard Krzakala, Lenka Zdeborová, Lucas Andry Clarte, Bruno Loureiro

Despite their incredible performance, it is well reported that deep neural networks tend to be overoptimistic about their prediction confidence. Finding effective and efficient calibration methods for neural networks is therefore an important endeavour tow ...
2023

Leveraging Unlabeled Data to Track Memorization

Patrick Thiran, Mahsa Forouzesh, Hanie Sedghi

Deep neural networks may easily memorize noisy labels present in real-world data, which degrades their ability to generalize. It is therefore important to track and evaluate the robustness of models against noisy label memorization. We propose a metric, ca ...
2023
Show more
Related MOOCs (14)
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.