Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Sociality has profound evolutionary roots and is observed from unicellular organisms to multicellular animals. In line with the view that social principles apply across levels of biological complexity, a growing body of data highlights the remarkable social nature of mitochondria – life-sustaining endosymbiotic organelles with their own genome that populate the cell cytoplasm. Here, we draw from organizing principles of behavior in social organisms to reveal that similar to individuals among social networks, mitochondria communicate with each other and with the cell nucleus, exhibit group formation and interdependence, synchronize their behaviors, and functionally specialize to accomplish specific functions within the organism. Mitochondria are social organelles. The extension of social principles across levels of biological complexity is a theoretical shift that emphasizes the role of communication and interdependence in cell biology, physiology, and neuroscience. With the help of emerging computational methods capable of capturing complex dynamic behavioral patterns, the implementation of social concepts in mitochondrial biology may facilitate cross-talk across disciplines towards increasingly holistic and accurate models of human health.
Marek Elias, Shweta Vinodrai Pipaliya
Omaya Pierre Dudin, Marine Olivetta