**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Frequency domain

Summary

In mathematics, physics, electronics, control systems engineering, and statistics, the frequency domain refers to the analysis of mathematical functions or signals with respect to frequency, rather than time. Put simply, a time-domain graph shows how a signal changes over time, whereas a frequency-domain graph shows how the signal is distributed within different frequency bands over a range of frequencies. A frequency-domain representation consists of both the magnitude and the phase of a set of sinusoids (or other basis waveforms) at the frequency components of the signal. Although it is common to refer to the magnitude portion as the frequency response of a signal, the phase portion is required to uniquely define the signal.
A given function or signal can be converted between the time and frequency domains with a pair of mathematical operators called transforms. An example is the Fourier transform, which converts a time function into a complex valued sum or integral of sine wav

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications (100)

Loading

Loading

Loading

Related units (27)

Related people (53)

Related courses (97)

Ce cours a pour objectif de former les étudiants de section Génie Electrique et Electronique à la conception de systèmes acoustiques, à l'aide d'un formalisme basé sur l'électrotechnique. A la fin du semestre, les étudiants seront capables de dimensionner, entre autres, des filtres acoustiques.

This class teaches the theory of linear time-invariant (LTI) systems. These systems serve both as models of physical reality (such as the wireless channel) and as engineered systems (such as electrical circuits, filters and control strategies).

We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas and techniques that come from probability, information theory as well as signal processing.

This paper is concerned with frequency domain theory for functional time series, which are temporally dependent sequences of functions in a Hilbert space. We consider a variance decomposition, which is more suitable for such a data structure than the variance decomposition based on the Karhunen-Loeve expansion. The decomposition we study uses eigenvalues of spectral density operators, which are functional analogs of the spectral density of a stationary scalar time series. We propose estimators of the variance components and derive convergence rates for their mean square error as well as their asymptotic normality. The latter is derived from a frequency domain invariance principle for the estimators of the spectral density operators. This principle is established for a broad class of linear time series models. It is a main contribution of the paper.

Romain Christophe Rémy Fleury, Mohammad Sajjad Mirmoosa, Xuchen Wang

Temporal modulation of components of electromagnetic systems provides an exceptional opportunity to engineer the response of those systems in a desired fashion, both in the time and frequency domains. For engineering time-modulated systems, one needs to thoroughly study the basic concepts and understand the salient characteristics of temporal modulation. In this paper, we carefully study physical models of basic bulk circuit elements—capacitors, inductors, and resistors—as frequency dispersive and time-varying components and study their effects in the case of periodical time modulations. We develop a solid theory for understanding these elements, and apply it to two important applications: wireless power transfer and antennas. For the first application, we show that, by periodically modulating the mutual inductance between the transmitter and receiver, the fundamental limits of classical wireless power transfer systems can be overcome. Regarding the second application, we consider a time-varying source for electrically small dipole antennas and show how time modulation can enhance the antenna performance. The developed theory of electromagnetic systems engineered by temporal modulation is applicable from radio frequencies to optical wavelengths.

2021Related concepts (60)

Fourier transform

In physics and mathematics, the Fourier transform (FT) is a transform that converts a function into a form that describes the frequencies present in the original function. The output of the transfo

Fourier analysis

In mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from

Spectral density

The power spectrum S_{xx}(f) of a time series x(t) describes the distribution of power into frequency components composing that signal. According to Fourier analysis, any

This thesis was carried out within the framework of a scientific cooperation project entitled “Application of High Power Electromagnetics to Human Safety” developed by the EPFL, the National University of Colombia and Los Andes University, Colombia. The project was funded by the Swiss Agency for Development and Cooperation (SDC) through the EPFL Centre Coopéation & Développement (CODEV). The Scientific Cooperation aimed at the study and development of techniques for the generation of high power electromagnetic signals for the disruption or preemptive activation of Improvised Explosive Devices (IEDs) during humanitarian clearance activities. The results and conclusions of the thesis will be applied to the construction of a resonant radiator, which can be used for securing humanitarian demining operations in Colombia. The thesis is devoted to the analysis of a specific type of resonant radiators known as Switched Oscillators (SWO). An SWO is a radiator constituted by a high voltage charging circuit that drives a quarter-wave transmission line resonator connected to an antenna. An SWO can produce high-amplitude, short duration, electromagnetic fields, with a moderate bandwidth, when compared to the main resonance frequency. The outcome of the thesis can be also be used in electromagnetic compatibility applications, for the production of resonant, high power electromagnetic fields, with the aim of testing the immunity of electronic systems against Intentional Electromagnetic Interference (IEMI) attacks. The thesis is divided in three parts. The first part deals with the electrostatic design of an SWO. A method for producing an optimized design of the electrodes forming the spark gap of the SWO is presented. The method is based on the generation of a curvilinear coordinate space on which the electrodes are conformal to one of the coordinate axis of the space. Laplace equation is solved in the interelectrodic space, obtaining an analytical solution for the electrostatic distribution. Furthermore, using appropriate mathematical manipulations, we derive an analytical expression for the impedance of the transmission line formed by the proposed electrodes. The second part of the thesis is devoted to the analysis of SWOs in the frequency domain. An original analysis approach, based on the chain-parameter technique, is proposed in which the SWO and the connected antenna are described using a two-port network using which a transfer function between the input voltage and the radiated field is established. A closed form expression of the resonance frequency of the SWO is also obtained. The developed technique makes it possible to study the response of an SWO when connected to an arbitrary antenna with a frequency-dependent input impedance. The final part of the thesis presents the construction and test of an SWO prototype. The prototype design is based on the theoretical developments presented in the first two parts of the thesis. The realized SWO is experimentally characterized using different antennas. It is characterized by an input voltage of 30 kV and a resonance frequency of 433 MHz. Radiated electric fields using monopole antennas were in the order of 10 kV/m at a distance of 1.5 m. The prototype is used for testing the validity of the electrodynamic model for the analysis of SWOs connected to frequency dependent antennas. Different monopole antennas connected to the SWO are considered and the radiated fields are measured and compared with theoretical calculations. It is shown that the developed theoretical model is able to reproduce with a good accuracy the behavior of the SWO connected to a frequency dependent antenna.

Related lectures (251)