Computational chemistryComputational chemistry is a branch of chemistry that uses computer simulation to assist in solving chemical problems. It uses methods of theoretical chemistry, incorporated into computer programs, to calculate the structures and properties of molecules, groups of molecules, and solids. It is essential because, apart from relatively recent results concerning the hydrogen molecular ion (dihydrogen cation, see references therein for more details), the quantum many-body problem cannot be solved analytically, much less in closed form.
Welfare economicsWelfare economics is a field of economics that applies microeconomic techniques to evaluate the overall well-being (welfare) of a society. This evaluation is typically done at the economy-wide level, and attempts to assess the distribution of resources and opportunities among members of society. The principles of welfare economics are often used to inform public economics, which focuses on the ways in which government intervention can improve social welfare.
Design matrixIn statistics and in particular in regression analysis, a design matrix, also known as model matrix or regressor matrix and often denoted by X, is a matrix of values of explanatory variables of a set of objects. Each row represents an individual object, with the successive columns corresponding to the variables and their specific values for that object. The design matrix is used in certain statistical models, e.g., the general linear model.
Church–Turing thesisIn computability theory, the Church–Turing thesis (also known as computability thesis, the Turing–Church thesis, the Church–Turing conjecture, Church's thesis, Church's conjecture, and Turing's thesis) is a thesis about the nature of computable functions. It states that a function on the natural numbers can be calculated by an effective method if and only if it is computable by a Turing machine. The thesis is named after American mathematician Alonzo Church and the British mathematician Alan Turing.
Cobham's thesisCobham's thesis, also known as Cobham–Edmonds thesis (named after Alan Cobham and Jack Edmonds), asserts that computational problems can be feasibly computed on some computational device only if they can be computed in polynomial time; that is, if they lie in the complexity class P. In modern terms, it identifies tractable problems with the complexity class P.
Sublinear functionIn linear algebra, a sublinear function (or functional as is more often used in functional analysis), also called a quasi-seminorm or a Banach functional, on a vector space is a real-valued function with only some of the properties of a seminorm. Unlike seminorms, a sublinear function does not have to be nonnegative-valued and also does not have to be absolutely homogeneous. Seminorms are themselves abstractions of the more well known notion of norms, where a seminorm has all the defining properties of a norm that it is not required to map non-zero vectors to non-zero values.
Methodological individualismIn the social sciences, methodological individualism is a framework that describes social phenomena as a consequence of subjective personal motivations by individual actors. Class or group dynamics, which operate on systemic explanations, are deemed illusory, and, thus, rejected or de-prioritized. With its bottom-up micro-level approach, methodological individualism is often contrasted with methodological holism, a top-down macro-level approach, and methodological pluralism.
Variety (cybernetics)In cybernetics, the term variety denotes the total number of distinguishable elements of a set, most often the set of states, inputs, or outputs of a finite-state machine or transformation, or the binary logarithm of the same quantity. Variety is used in cybernetics as an information theory that is easily related to deterministic finite automata, and less formally as a conceptual tool for thinking about organization, regulation, and stability. It is an early theory of complexity in automata, complex systems, and operations research.