Publication

Accuracy Improvement of the Transient Heater Foil Technique for Heat Transfer Tests: Preliminary Results

Abstract

Experimental heat transfer measurements are used in a wide range of fields, for example to validate new cooling concepts in turbomachinery, to assess the performances of heat exchangers, and to provide data for numerical simulations. A particular challenge is posed by complex geometries, where the heat transfer coefficients cannot be determined with the usual transient heater mesh method. One way to address these complex systems is the transient heater foil method, which generates a constant heat flux in the metal foil, which is attached at the surface to be measured. However, the accuracy of the measurement remains an open issue compared to the heater mesh method. Here we show a modification of the heater foil method, which uses a linearly increasing heat flux in the foil to improve the measurement ac-curacy, especially in low heat transfer regions. The new method is presented using a single impingement cooling setup; results demonstrate good agreement with the baseline method (heater foil with step heating) and the literature, while the accuracy is improved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.