ONETEP plus TOSCAM: Uniting Dynamical Mean Field Theory and Linear-Scaling Density Functional Theory
Related publications (51)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The transient electronic and molecular structure arising from photoinduced charge transfer in transition metal complexes is studied by X-ray powder diffraction with a 100 fs temporal and atomic spatial resolution. Crystals containing a dense array of Fe(II ...
Transition-metal catalyzed C-H functionalizations became a complementary and efficient bond-forming strategy over the past decade. In this respect, Cp*Rh(III) complexes have emerged as powerful catalysts for a broad spectrum of reactions giving access to s ...
A wide variety of physicochemical processes at a molecular level, in particular charge or energy transfer, electronic and vibrational relaxation, are at the origin of biological functionality of proteins and organometallic compounds. The work reported in t ...
Density Functional Theory (DFT) and its time-dependent extension (TDDFT) have become two of the most popular approaches for computer simulations of the electronic structure and response properties of quantum systems. A reasonable compromise between accurac ...
We introduce an improvement to the Hubbard U augmented density functional approach known as DFT+U that incorporates variations in the value of self-consistently calculated, linear-response U with changes in geometry. This approach overcomes the one major s ...
We apply first-principles approaches with Hubbard U corrections for calculation of small molecule binding energetics to open-shell transition metal atoms in metal-organic frameworks (MOFs). Using density functional theory with van derWaals dispersion-corre ...
The excited state properties of transition metal complexes have become a central focus of research owing to a wide range of possible applications that seek to exploit their luminescence properties. Herein, we use density functional theory (DFT), time-depen ...
Catalytic activity of perovskites for oxygen reduction (ORR) was recently correlated with bulk d-electron occupancy of the transition metal. We expand on the resultant model, which successfully reproduces the high activity of LaMnO3 relative to ...
Metal organic supramolecular chemistry on surfaces has matured to a point where its underlying growth mechanisms are well understood and structures of defined coordination environments of metal atoms can be synthesized in a controlled and reproducible proc ...
The core structures of < c + a > edge and screw dislocations in Mg are computed using density functional theory (DFT). Both types dissociate into two 1/2 < c + a > partials on the second-order pyramidal planes. These DFT results are then allowed to relax w ...