Publication

Capturing Non-local Effects in Kohn-Sham Density Functional Theory

Andrey Laktionov
2014
EPFL thesis
Abstract

Density Functional Theory (DFT) and its time-dependent extension (TDDFT) have become two of the most popular approaches for computer simulations of the electronic structure and response properties of quantum systems. A reasonable compromise between accuracy and computational cost allows to apply DFT to a wide range of systems from small molecules to biological complexes. Despite the in principle exact nature of DFT and TDDFT, practical calculations require the use of approximate DFT exchange-correlation (XC) functionals and TDDFT kernels and the accuracy of the obtained results is determined by the accuracy of the chosen XC description. These approximations inevitably introduce some limitations in the use of DFT-based methods.The inability of the local spin density approximation, generalized gradient approximations (GGA) and even some hybrid functionals to properly describe charge transfer (CT) excitations and predict intermolecular interaction energies of weakly bound complexes are two major drawbacks of current XC descriptions. This thesis is therefore devoted to the improvement of XC functionals for the special cases of weak interactions and charge-transfer excitations. Many original strategies have been suggested to cure DFT calculations from these failures. In particular, the Dispersion-Corrected Atom-Centered Potentials (DCACP) approach provides an accurate description of dispersion forces within generalized gradient approximations for the exchange-correlation functional. The DCACP method has been extensively used for the last seven years and has shown an excellent performance for a large class of applications. However, one of the drawbacks of the current implementation of DCACP is that the correct R-6 asymptotics of dispersion interaction is not reproduced. A first goal of this thesis was to enable DCACP to recover the R-6 asymptotic limit. To this end, we have designed a new 2-channel version of DCACP and carried out test calculations on both small molecules and large macromolecular complexes. The obtained results demonstrate the excellent performance and transferability of the DCACP approach. Moreover, for large macromolecular complexes, in which the binding energy is dominated by dispersion, [pi]-stacking, or hydrogen bonding, 2-channels DCACP were found to be the best method overall for correcting the popular BLYP functional. Our study clearly shows that account of R-6 asymptotics is crucial for the description of large complexes and that 2-channels DCACP are fully able to capture these effects. On the contrary, an account of R-6 asymptotics is of little importance for small molecules since the remaining errors of the underlying GGA functional are dominating. With the aim of deepening our understanding of the DCACP concept and the reasons for its excellent performance, we explored the properties of the two DCACP parameters and were able to establish some systematic trends. It turned out that variational tuning of the DCACP can be done in an analytical manner that enables the easy generation of DCACP potentials for the full periodic table. Furthermore, since DCACP have little but crucial impact on the electronic density, dispersion energies can be obtained from non-self-consistent electron densities. These empirical findings suggest that the high transferability of DCACP is due to their atom-centered form and the intrinsically weak nature of dispersion interactions. [...]

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Density functional theory
Density-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body systems, in particular atoms, molecules, and the condensed phases. Using this theory, the properties of a many-electron system can be determined by using functionals, i.e. functions of another function. In the case of DFT, these are functionals of the spatially dependent electron density.
Local-density approximation
Local-density approximations (LDA) are a class of approximations to the exchange–correlation (XC) energy functional in density functional theory (DFT) that depend solely upon the value of the electronic density at each point in space (and not, for example, derivatives of the density or the Kohn–Sham orbitals). Many approaches can yield local approximations to the XC energy. However, overwhelmingly successful local approximations are those that have been derived from the homogeneous electron gas (HEG) model.
Weak interaction
In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is the mechanism of interaction between subatomic particles that is responsible for the radioactive decay of atoms: The weak interaction participates in nuclear fission and nuclear fusion.
Show more
Related publications (112)

Nonempirical semilocal density functionals for correcting the self-interaction of polaronic states

Alfredo Pasquarello, Stefano Falletta

Through the use of the piecewise-linearity condition of the total energy, we correct the self-interaction for the study of polarons by constructing nonempirical functionals at the semilocal level of theory. We consider two functionals, the gamma DFT and mu ...
Aip Publishing2024

Disentangling Thermal from Electronic Contributions in the Spectral Response of Photoexcited Perovskite Materials

Majed Chergui, Thomas Charles Henry Rossi, Malte Oppermann, Lijie Wang

Disentangling electronic and thermal effects in photoexcited perovskite materials is crucial for photovoltaic and optoelectronic applications but remains a challenge due to their intertwined nature in both the time and energy domains. In this study, we emp ...
Washington2024

Advancing Computational Chemistry with Stochastic and Artificial Intelligence Approaches

Justin Villard

Computational chemistry aims to simulate reactions and molecular properties at the atomic scale, advancing the design of novel compounds and materials with economic, environmental, and societal implications. However, the field relies on approximate quantum ...
EPFL2023
Show more
Related MOOCs (13)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.