**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Normalized Gaussian path integrals

Abstract

Path integrals play a crucial role in describing the dynamics of physical systems subject to classical or quantum noise. In fact, when correctly normalized, they express the probability of transition between two states of the system. In this work, we show a consistent approach to solve conditional and unconditional Euclidean (Wiener) Gaussian path integrals that allow us to compute transition probabilities in the semiclassical approximation from the solutions of a system of linear differential equations. Our method is particularly useful for investigating Fokker-Planck dynamics and the physics of stringlike objects such as polymers. To give some examples, we derive the time evolution of the d-dimensional Ornstein-Uhlenbeck process and of the Van der Pol oscillator driven by white noise. Moreover, we compute the end-to-end transition probability for a charged string at thermal equilibrium, when an external field is applied.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (44)

Related publications (148)

Related MOOCs (26)

Probability

Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, 0 indicates impossibility of the event and 1 indicates certainty. The higher the probability of an event, the more likely it is that the event will occur. A simple example is the tossing of a fair (unbiased) coin.

Linear differential equation

In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form where a0(x), ..., an(x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y′, ..., y(n) are the successive derivatives of an unknown function y of the variable x. Such an equation is an ordinary differential equation (ODE).

Ordinary differential equation

In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. The term "ordinary" is used in contrast with partial differential equations which may be with respect to one independent variable. A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form where a_0(x), .

Neuronal Dynamics - Computational Neuroscience of Single Neurons

The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.

Neuronal Dynamics - Computational Neuroscience of Single Neurons

The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.

Warm-up for EPFL

Warmup EPFL est destiné aux nouvelles étudiantes et étudiants de l'EPFL.

We prove global in time well-posedness for perturbations of the 2D stochastic Navier-Stokes equations partial derivative( t)u + u center dot del u = Delta u - del p + sigma + xi, u(0, center dot ) = u(0),div (u) = 0, driven by additive space-time white noi ...

Majed Chergui, Katrin Elisabeth Oberhofer

Networks of tryptophan (Trp)& horbar;an aromatic amino acid with strong fluorescence response & horbar;are ubiquitous in biological systems, forming diverse architectures in transmembrane proteins, cytoskeletal filaments, subneuronal elements, photorecepto ...

The probability of detecting technosignatures (i.e., evidence of technological activity beyond Earth) increases with their longevity, or the time interval over which they manifest. Therefore, the assumed distribution of longevities has some bearing on the ...