Stick-Slip in Peeling of Soft Adhesives: a Finite Element Model Using Reversible Cohesive Elements
Related publications (38)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The goal of this project is to numerically solve the Navier-Stokes equations by using different numerical methods with particular emphasis on solving the problem of the flow past a square cylinder. In particular, we use the finite element method based on P ...
The scaling of turbulence-driven heat transport with system size in magnetically confined plasmas is reexamined using first-principles based numerical simulations. Two very different numerical methods are applied to this problem, in order to resolve a long ...
The contributions assembled in the present volume proceed from the lectures of the 2009 ALERT Geomaterials School devoted to the Failure in the multiphase geomaterials. The multiphase behaviour of geomaterials used to be mainly considered from the point of ...
A new finite element method for the efficient discretization of elliptic homogenization problems is proposed. These problems, characterized by data varying over a wide range of scales cannot be easily solved by classical numerical methods that need mesh re ...
A general continuum theory for particle size segregation and diffusive remixing in polydisperse granular avalanches is formulated using mixture theory. Comparisons are drawn to existing segregation theories for bi-disperse mixtures and the case of a ternar ...
A finite element heterogeneous multiscale method is proposed for the wave equation with highly oscillatory coefficients. It is based on a finite element discretization of an effective wave equation at the macro scale, whose a priori unknown effective coeff ...
A fully discrete analysis of the finite element heterogeneous multiscale method for a class of nonlinear elliptic homogenization problems of nonmonotone type is proposed. In contrast to previous results obtained for such problems in dimension d≤2 for ...
We introduce the "First Fit Matching Periods" algorithm for static-priority multiprocessor scheduling of periodic tasks with implicit deadlines and show that it yields asymptotically optimal processor assignments if utilization values are chosen uniformly ...
In this paper, we present a mathematical modeling of some magnetohydrodynamic effects arising in an aluminum production cell as well as its numerical approximation by a finite element method. We put the emphasis on the magnetic effects which live in the wh ...
Among the efficient numerical methods based on atomistic models, the quasi-continuum (QC) method has attracted growing interest in recent years. The QC method was first developed for crystalline materials with Bravais lattice and was later extended to mult ...