Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Diffusion-weighted MRI (DW-MRI) has recently seen a rising interest in planar, spherical and general B-tensor encodings. Some of these sequences have aided traditional linear encoding in the estimation of white matter microstructural features, generally by making DW-MRI less sensitive to the orientation of axon fascicles in a voxel. However, less is known about their potential to make the signal more sensitive to fascicle orientation, especially in crossing-fascicle voxels. Although planar encoding has been commended for the resemblance of its signal with the voxel's orientation distribution function (ODF), linear encoding remains the near undisputed method of choice for orientation estimation. This paper presents a theoretical framework to gauge the sensitivity of axisymmetric B-tensors to fascicle orientations. A signal peak separation index (SPSI) is proposed, motivated by theoretical considerations on a simple multi-tensor model of fascicle crossing. Theory and simulations confirm the intuition that linear encoding, because it maximizes B-tensor anisotropy, possesses an intrinsic advantage over all other axisymmetric B-tensors. At identical SPSI however, oblate B-tensors yield higher signal and may be more robust to acquisition noise than their prolate counterparts. The proposed index relates the properties of the B-tensor to those of the tissue microstructure in a straightforward way and can thus guide the design of diffusion sequences for improved orientation estimation and tractography.
Erick Jorge Canales Rodriguez, Marco Pizzolato, Tim Bjørn Dyrby
Dimitri Nestor Alice Van De Ville, Elvira Pirondini, Cyprien Alban Félicien Rivier
Dimitri Nestor Alice Van De Ville, Friedhelm Christoph Hummel, Gabriel Girard, Takuya Morishita, Elena Beanato, Lisa Aïcha Mireille Julie Fleury, Maximilian Jonas Wessel, Philipp Johannes Koch, Philip Egger, Andéol Geoffroy Cadic-Melchior