Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Related publications (111)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A prominent parameter in dealing with swash and morphological evolution is the runup length or height, defined as the limit of landward sea. Therefore, it is necessary to predict the runup height in this area. In this paper, the abilities of a new Adaptive ...
This paper completes the study presented in the accompanying paper, and demonstrates a numerical algorithm for parameter prediction from the piezocone test (CPTU) data. This part deals with a development of neural network (NN) models which are able to map ...
When making a choice with limited information, we explore new features through trial-and-error to learn how they are related. However, few studies have investigated exploratory behaviour when information is limited. In this study, we address, at both the b ...
Our brain continuously self-organizes to construct and maintain an internal representation of the world based on the information arriving through sensory stimuli. Remarkably, cortical areas related to different sensory modalities appear to share the same f ...
We report on the use of deep learning algorithms to perform depth recovery in multiview imaging. We show that if enough training data are provided, a neural network such as multilayer perceptron can be trained to recover the depth in multiview imaging as a ...
PyBrain is a versatile machine learning library for Python. Its goal is to provide flexible, easy-to-use yet still powerful algorithms for machine learning tasks, including a variety of predefined environments and benchmarks to test and compare algorithms. ...
This paper investigates the use of a hierarchy of Neural Networks for performing data driven feature extraction. Two different hierarchical structures based on long and short temporal context are considered. Features are tested on two different LVCSR syste ...
This paper investigates the use of a hierarchy of Neural Networks for performing data driven feature extraction. Two different hierarchical structures based on long and short temporal context are considered. Features are tested on two different LVCSR syste ...
In this paper, we extend the Hopfield Associative Memory for storing multiple sequences of varying duration. We apply the model for learning, recognizing and encoding a set of human gestures. We measure systematically the performance of the model against n ...
Choosing a suitable topology for a neural network, given an application, is a difficult problem. Usually, after a tedious trial-and-error process, an oversized topology is chosen, which is prone to various drawbacks like a high demand on computational reso ...