Scaling up Kernel Ridge Regression via Locality Sensitive Hashing
Related publications (42)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
It is well-known that the Gaussian functions and, more generally, their modulations-translations (the Gabor functions) have the unique property of being optimally localized in space and frequency in the sense of Heisenberg's uncertainty principle. In this ...
This work considers sampled data of continuous-domain Gaussian processes. We derive a maximum-likelihood estimator for identifying autoregressive moving average parameters while incorporating the sampling process into the problem formulation. The proposed ...
We describe a kernel wrapper, a Mercer kernel for the task of phoneme sequence recognition which is based on operations with the Gaussian kernel, and suitable for any sequence kernel classifier. We start by presenting a kernel-based algorithm for phoneme s ...
The excursion set theory, where density perturbations evolve stochastically with the smoothing scale, provides a method for computing the dark matter halo mass function. The computation of the mass function is mapped into the so-called first-passage time p ...
In this paper, we focus on the problem of interpolating a continuous-time AR(1) process with stable innovations using minimum average error criterion. Stable innovations can be either Gaussian or non-Gaussian. In the former case, the optimality of the expo ...
We propose a novel system for designing and manufacturing surfaces that produce desired caustic images when illuminated by a light source. Our system is based on a nonnegative image decomposition using a set of possibly overlapping anisotropic Gaussian ker ...
Taking inspiration from approximate ranking, this paper nvestigates the use of rank-based Support Vector Machine as surrogate model within CMA-ES, enforcing the invariance of the approach with respect to monotonous transformations of the fitness function. ...
We study the statistics of wavelet coefficients of non-Gaussian images, focusing mainly on the behaviour at coarse scales. We assume that an image can be whitened by a fractional Laplacian operator, which is consistent with an ∥ω∥−γ spectral ...
Sinusoidal transforms such as the DCT are known to be optimal—that is, asymptotically equivalent to the Karhunen-Loève transform (KLT)—for the representation of Gaussian stationary processes, including the classical AR(1) processes. While the KLT remains ...
Sinusoidal transforms such as the DCT are known to be optimal-that is, asymptotically equivalent to the Karhunen-Loeve transform (KLT)-for the representation of Gaussian stationary processes, including the classical AR(1) processes. While the KLT remains a ...