Compress-and-restart block Krylov subspace methods for Sylvester matrix equations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this thesis, we study two distinct problems.
The first problem consists of studying the linear system of partial differential equations which consists of taking a k-form, and applying the exterior derivative 'd' to it and add the wedge product with a 1- ...
The QZ algorithm for computing eigenvalues and eigenvectors of a matrix pencil A - lambda B requires that the matrices first be reduced to Hessenberg-triangular (HT) form. The current method of choice for HT reduction relies entirely on Givens rotations re ...
We consider the problem of efficiently solving Sylvester and Lyapunov equations of medium and large scale, in case of rank-structured data, i.e., when the coefficient matrices and the right-hand side have low-rank off-diagonal blocks. This comprises proble ...
We consider the infinite dimensional linear programming (inf-LP) approach for solving stochastic control problems. The inf-LP corresponding to problems with uncountable state and input spaces is in general computationally intractable. By focusing on linear ...
This work develops a distributed optimization algorithm with guaranteed exact convergence for a broad class of left-stochastic combination policies. The resulting exact diffusion strategy is shown to have a wider stability range and superior convergence pe ...
The focus of this thesis is on developing efficient algorithms for two important problems arising in model reduction, estimation of the smallest eigenvalue for a parameter-dependent Hermitian matrix and solving large-scale linear matrix equations, by extra ...
We consider the problem of efficiently solving Sylvester and Lyapunov equations of medium and large scale, in case of rank-structured data, i.e., when the coefficient matrices and the right-hand side have low-rank off- diagonal blocks. This comprises probl ...
Linear matrix equations, such as the Sylvester and Lyapunov equations, play an important role in various applications, including the stability analysis and dimensionality reduction of linear dynamical control systems and the solution of partial differentia ...
Many classical Computer Vision problems, such as essential matrix computation and pose estimation from 3D to 2D correspondences, can be solved by finding the eigenvector corresponding to the smallest, or zero, eigenvalue of a matrix representing a linear sy ...
Matrix equations of the kind A(1)X(2)+A(0)X+A(-1)=X, where both the matrix coefficients and the unknown are semi-infinite matrices belonging to a Banach algebra, are considered. These equations, where coefficients are quasi-Toeplitz matrices, are encounter ...